Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmacology and Experimental Therapeutics
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Isoproterenol Exacerbates a Long QT Phenotype in Kcnq1-Deficient Neonatal Mice: Possible Roles for Human-Like Kcnq1 Isoform 1 and Slow Delayed Rectifier K+ Current

Authors: Bjorn C, Knollmann; Mathew C, Casimiro; Alexander N, Katchman; Syevda G, Sirenko; Tilmann, Schober; Qi, Rong; Karl, Pfeifer; +1 Authors

Isoproterenol Exacerbates a Long QT Phenotype in Kcnq1-Deficient Neonatal Mice: Possible Roles for Human-Like Kcnq1 Isoform 1 and Slow Delayed Rectifier K+ Current

Abstract

To determine whether the neonatal mouse can serve as a useful model for studying the molecular pharmacological basis of Long QT Syndrome Type 1 (LQT1), which has been linked to mutations in the human KCNQ1 gene, we measured QT intervals from electrocardiogram (ECG) recordings of wild-type (WT) and Kcnq1 knockout (KO) neonates before and after injection with the beta-adrenergic receptor agonist, isoproterenol (0.17 mg/kg, i.p.). Modest but significant increases in JT, QT, and rate-corrected QT (QTc) intervals were found in KO neonates relative to WT siblings during baseline ECG assessments (QTc = 57 +/- 3 ms, n = 22 versus 49 +/- 2 ms, n = 28, respectively, p 88% amino acid identity) between the predominant human and mouse cardiac Kcnq1 isoforms.

Keywords

Mice, Knockout, Potassium Channels, KCNQ Potassium Channels, Sequence Homology, Amino Acid, Molecular Sequence Data, Isoproterenol, Action Potentials, Adrenergic beta-Agonists, Long QT Syndrome, Mice, Phenotype, Potassium Channels, Voltage-Gated, KCNQ1 Potassium Channel, Animals, Humans, Amino Acid Sequence, Delayed Rectifier Potassium Channels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Average