Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARUdAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of General Physiology
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
Data sources: PubMed Central
The Journal of General Physiology
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle

Authors: Royer Leandro; Sztretye Monika; Manno Carlo; Pouvreau Sandrine; Zhou Jingsong; Knollmann Bjorn C.; PROTASI, Feliciano; +2 Authors

Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle

Abstract

Contractile activation in striated muscles requires a Ca2+ reservoir of large capacity inside the sarcoplasmic reticulum (SR), presumably the protein calsequestrin. The buffering power of calsequestrin in vitro has a paradoxical dependence on [Ca2+] that should be valuable for function. Here, we demonstrate that this dependence is present in living cells. Ca2+ signals elicited by membrane depolarization under voltage clamp were compared in single skeletal fibers of wild-type (WT) and double (d) Casq-null mice, which lack both calsequestrin isoforms. In nulls, Ca2+ release started normally, but the store depleted much more rapidly than in the WT. This deficit was reflected in the evolution of SR evacuability, E, which is directly proportional to SR Ca2+ permeability and inversely to its Ca2+ buffering power, B. In WT mice E starts low and increases progressively as the SR is depleted. In dCasq-nulls, E started high and decreased upon Ca2+ depletion. An elevated E in nulls is consistent with the decrease in B expected upon deletion of calsequestrin. The different value and time course of E in cells without calsequestrin indicate that the normal evolution of E reflects loss of B upon SR Ca2+ depletion. Decrement of B upon SR depletion was supported further. When SR calcium was reduced by exposure to low extracellular [Ca2+], release kinetics in the WT became similar to that in the dCasq-null. E became much higher, similar to that of null cells. These results indicate that calsequestrin not only stores Ca2+, but also varies its affinity in ways that progressively increase the ability of the store to deliver Ca2+ as it becomes depleted, a novel feedback mechanism of potentially valuable functional implications. The study revealed a surprisingly modest loss of Ca2+ storage capacity in null cells, which may reflect concurrent changes, rather than detract from the physiological importance of calsequestrin.

Keywords

Mice, Knockout, Microscopy, Confocal, Patch-Clamp Techniques, Calcium-Binding Proteins, Buffers, Article, polymorphic ventricular-tachycardia; sarcoplasmic-reticulum CA2+; ryanodine receptor; twitch fibers; cardiac calsequestrin; charge movement; luminal calcium; mouse muscle; slow-twitch; release, Membrane Potentials, Kinetics, Mice, Sarcoplasmic Reticulum, Muscle Fibers, Fast-Twitch, Animals, Calsequestrin, Calcium, Calcium Signaling, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Green
Published in a Diamond OA journal