Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/428805...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Accurate peptide fragmentation predictions allow data driven approaches to replace and improve upon proteomics search engine scoring functions

Authors: C. Silva, Ana Sílvia; Martens, Lennart; Degroeve, Sven;

Accurate peptide fragmentation predictions allow data driven approaches to replace and improve upon proteomics search engine scoring functions

Abstract

The use of post-processing tools to maximize the information gained from a proteomics search engine is widely accepted and used by the community, with the most notable example being Percolator - a semi-supervised machine learning model which learns a new scoring function for a given dataset. The usage of such tools is however bound to the search engine's scoring scheme, which doesn't always make full use of the intensity information present in a spectrum. We aim to show how this tool can be applied in such a way that maximizes the use of spectrum intensity information by leveraging another machine learning-based tool, MS2PIP. MS2PIP predicts fragment ion peak intensities. We show how comparing these intensities to annotated experimental spectra by calculating direct similarity metrics provides enough information for a tool such as Percolator to accurately separate two classes of PSMs. This approach allows using more information out of the data (compared to simpler intensity based metrics, like peak counting or explained intensities summing) while maintaining control of statistics such as the false discovery rate.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green