Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Nedd4-2 Induces Endocytosis and Degradation of Proteolytically Cleaved Epithelial Na+ Channels

Authors: Rajesh, Kabra; Kristin K, Knight; Ruifeng, Zhou; Peter M, Snyder;

Nedd4-2 Induces Endocytosis and Degradation of Proteolytically Cleaved Epithelial Na+ Channels

Abstract

As a pathway for Na(+) reabsorption, the epithelial Na(+) channel ENaC is critical for Na(+) homeostasis and blood pressure control. Na(+) transport is regulated by Nedd4-2, an E3 ubiquitin ligase that decreases ENaC expression at the cell surface. To investigate the underlying mechanisms, we proteolytically cleaved/activated ENaC at the cell surface and then quantitated the rate of disappearance of cleaved channels using electrophysiological and biochemical assays. We found that cleaved ENaC channels were rapidly removed from the cell surface. Deletion or mutation of the Nedd4-2 binding motifs in alpha, beta, and gammaENaC dramatically reduced endocytosis, whereas a mutation that disrupts a YXXØ endocytosis motif had no effect. ENaC endocytosis was also decreased by silencing of Nedd4-2 and by expression of a dominant negative Nedd4-2 construct. Conversely, Nedd4-2 overexpression increased ENaC endocytosis in human embryonic kidney 293 cells but had no effect in Fischer rat thyroid epithelia. In addition to its effect on endocytosis, Nedd4-2 also increased the rate of degradation of the cell surface pool of cleaved alphaENaC. Together the data indicate that Nedd4-2 reduces ENaC surface expression by altering its trafficking at two distinct sites in the endocytic pathway, inducing endocytosis of cleaved channels and targeting them for degradation.

Related Organizations
Keywords

Ion Transport, Endosomal Sorting Complexes Required for Transport, Nedd4 Ubiquitin Protein Ligases, Ubiquitin-Protein Ligases, Amino Acid Motifs, Sodium, Thyroid Gland, Endocytosis, Epithelium, Rats, Inbred F344, Cell Line, Rats, Animals, Humans, Epithelial Sodium Channels, Protein Processing, Post-Translational, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 1%
gold