Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Immunologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Immunology
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages

Authors: Narayanan Parameswaran; Katie J. Loniewski; Yuhui Shi; James J. Pestka;

Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages

Abstract

G-protein coupled receptor kinases (GRKs) and arrestins (ARRs) are ubiquitously distributed crucial signaling proteins that are critical in the regulation of responsiveness of G-protein coupled receptors (GPCRs). Toll-like receptors (TLRs) (class of pattern recognition receptors) play a vital role in macrophage biology and innate immunity. Because GPCR responsiveness is regulated in part by the expression levels of GRKs/ARRs, the focus of this work was to uncover potential cross-talk mechanisms between TLRs and GPCRs via regulation of GRK/ARR expression in primary mouse macrophages. We demonstrate here that activation of TLR2 and 4 (but not TLR3 and 7) significantly decrease ARR2 but not ARR3 protein levels in macrophages. Compared to this, activation of TLR2, 4, and 7 (but not TLR3) significantly decrease GRK5 and 6 protein levels. Surprisingly, GRK2 protein levels are markedly increased by TLR2, 3, 4 and 7. Mechanistically, expression of ARR2 and GRK5 are regulated at transcriptional as well as post-translational levels. Downregulation of GRK6 by LPS is regulated primarily at the post-translational level. TLR4-induced GRK2 level, however, is both transcriptionally and post-transcriptionally regulated. Our results demonstrate previously unknown crucial regulatory mechanisms that alter ARR/GRK expression levels in macrophages that might modify many, if not all, GPCR-mediated innate immune responses.

Related Organizations
Keywords

Lipopolysaccharides, Arrestins, MAP Kinase Signaling System, Macrophages, RNA Stability, Toll-Like Receptors, G-Protein-Coupled Receptor Kinases, beta-Arrestin 2, Gene Expression Regulation, Enzymologic, Toll-Like Receptor 2, I-kappa B Kinase, Mice, Inbred C57BL, Toll-Like Receptor 4, Mice, Animals, RNA, Messenger, Enzyme Inhibitors, Protein Processing, Post-Translational, Cells, Cultured, beta-Arrestins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%