Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Iron, glucose and intrinsic factors alter sphingolipid composition as yeast cells enter stationary phase

Authors: Robert L, Lester; Bradley R, Withers; Megan A, Schultz; Robert C, Dickson;

Iron, glucose and intrinsic factors alter sphingolipid composition as yeast cells enter stationary phase

Abstract

Survival of Saccharomyces cerevisiae cells, like most microorganisms, requires switching from a rapidly dividing to a non-dividing or stationary state. To further understand how cells navigate this switch, we examined sphingolipids since they are key structural elements of membranes and also regulate signaling pathways vital for survival. During and after the switch to a non-dividing state there is a large increase in total free and sphingolipid-bound long chain-bases and an even larger increase in free and bound C20-long-chain bases, which are nearly undetectable in dividing cells. These changes are due to intrinsic factors including Orm1 and Orm2, ceramide synthase, Lcb4 kinase and the Tsc3 subunit of serine palmitoyltransferase as well as extrinsic factors including glucose and iron. Lowering the concentration of glucose, a form of calorie restriction, decreases the level of LCBs, which is consistent with the idea that reducing the level of some sphingolipids enhances lifespan. In contrast, iron deprivation increases LCB levels and decreases long term survival; however, these phenomena may not be related because iron deprivation disrupts many metabolic pathways. The correlation between increased LCBs and shorter lifespan is unsupported at this time. The physiological rise in LCBs that we observe may serve to modulate nutrient transporters and possibly other membrane phenomena that contribute to enhanced stress resistance and survival in stationary phase.

Related Organizations
Keywords

Intrinsic Factor, Sphingolipids, Glucose, Saccharomyces cerevisiae Proteins, Iron, Cell Cycle, Saccharomyces cerevisiae

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Average
Top 10%
bronze