Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/471409...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Peripheral blood exosomes pass blood-brain-barrier and induce glial cell activation

Authors: Morales-Prieto, Diana M.; Stojiljkovic, Milan; Diezel, Celia; Streicher, Priska-Elisabeth; Röstel, Franziska; Lindner, Julia; Weis, Sebastian; +2 Authors

Peripheral blood exosomes pass blood-brain-barrier and induce glial cell activation

Abstract

ABSTRACTBackgroundExosomes are involved in intracellular communication and contain proteins, mRNAs, miRNAs, and signaling molecules. Exosomes were shown to act as neuroinflammatory mediators involved in neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS). Brain aging has been associated to increased neuroinflammation. In addition, a decreased extracellular vesicle concentration was observed in aging tissues. The specific mechanisms how exosomes and aging are connected are not known yet.ResultsHere we have shown that peripheral injection had almost no effect on selected gene expression in the liver. However, exosome injection has led to changes in the specific markers of glial cell activation (CD68, Iba1, GFAP). Interestingly, only injection of exosomes isolated from aged mice induced significant activation of astrocyte cells, as shown by increased GFAP expression.ConclusionTranscription levels of genes GFAP, TGF-β, CD68, Iba1 known to be involved in glial cell function are significantly changing after introduction of peripheral extracellular vesicles. Exosomes were able to pass blood brain barrier and induce glial cell activation. GFAP known to be a specific astrocyte activation marker was significantly higher expressed after injection of old but not young exosomes, indicating a possible role of exosomes in the mechanisms of brain aging.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green