Powered by OpenAIRE graph

Polyphenols, isothiocyanates, and carotenoid derivatives enhance estrogenic activity in bone cells but inhibit it in breast cancer cells

Authors: Karin Linnewiel-Hermoni; Yoav Sharoni; Michael Danilenko; Anna Veprik; Joseph Levy; Marina Khanin;

Polyphenols, isothiocyanates, and carotenoid derivatives enhance estrogenic activity in bone cells but inhibit it in breast cancer cells

Abstract

While exposure to estrogens is a major risk factor of breast and endometrial cancer, it well established that estrogens are beneficial for bone health. We have previously shown that carotenoids inhibit estrogen signaling in breast and endometrial cancer cells. The aim of this study was to compare the effects of various phytonutrients, (carotenoid derivatives, polyphenols, isothiocyanates) on estrogenic activity in breast cancer cells and osteoblast-like cells. All the tested phytonutrients inhibited estrogen response element (ERE) transactivation in breast cancer cells. In contrast, these compounds either did not affect or enhanced ERE activity and the expression of several bone-forming genes. These results were obtained using two osteoblast-like cell lines, MG-63 human osteosarcoma cells stably transfected with estrogen receptor-α (ERα) and MC3T3-E1 mouse calvaria-derived cells expressing endogenous ER. Phytonutrients-induced ERE inhibition in breast cancer cells, and its potentiation in osteoblast-like cells were associated both with a decrease and a rise in total and nuclear ERα levels, respectively. Phytonutrients activated the electrophile/antioxidant response element (EpRE/ARE) transcription system to various extents in both cancer and bone cell lines. Overexpression of Nrf2, the major EpRE/ARE activating transcription factor, mimicked the effects of phytonutrients, causing inhibition and enhancement of ERE transactivation in breast cancer cells and in osteoblast-like cells, respectively. Moreover, reduction in Nrf2 levels by RNAi led to a decrease in the phytonutrient potentiation of ERE activity transactivation in osteoblast-like cells. These findings suggest that the enhancement and inhibition of estrogen signaling by phytonutrients in bone-derived cells and breast cancer cells, respectively, is partially mediated by the activation of the Nrf2/ARE system.

Related Organizations
Keywords

Osteoblasts, Transcription, Genetic, NF-E2-Related Factor 2, Estrogen Receptor alpha, Polyphenols, Breast Neoplasms, Estrogens, Carotenoids, Antioxidant Response Elements, Mice, Isothiocyanates, Cell Line, Tumor, Animals, Humans, Female, RNA Interference

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%