Intron Position as an Evolutionary Marker of Thioredoxins and Thioredoxin Domains
pmid: 8642611
Intron Position as an Evolutionary Marker of Thioredoxins and Thioredoxin Domains
In contrast to prokaryotes, which typically possess one thioredoxin gene per genome, three different thioredoxin types have been described in higher plants. All are encoded by nuclear genes, but thioredoxins m and f are chloroplastic while thioredoxins h have no transit peptide and are probably cytoplasmic. We have cloned and sequenced Arabidopsis thaliana genomic fragments encoding the five previously described thioredoxins h, as well as a sixth gene encoding a new thioredoxin h. In spite of the high divergence of the sequences, five of them possess two introns at positions identical to the previously sequenced tobacco thioredoxin h gene, while a single one has only the first intron. The recently published sequence of Chlamydomonas thioredoxin h shows three introns, two at the same positions as in higher plants. This strongly suggests a common origin for all cytoplasmic thioredoxins of plants and green algae. In addition, we have cloned and sequenced pea DNA genomic fragments encoding thioredoxins m and f. The thioredoxin m sequence shows only one intron between the regions encoding the transit peptide and the mature protein, supporting the prokaryotic origin of this sequence and suggesting that its association with the transit peptide has been facilitated by exon shuffling. In contrast, the thioredoxin f sequence shows two introns, one at the same position as an intron in various plant and animal thioredoxins and the second at the same position as an intron in thioredoxin domains of disulfide isomerases. This strongly supports the hypothesis of a eukaryotic origin for chloroplastic thioredoxin f.
Genetic Markers, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Arabidopsis, Protein Disulfide-Isomerases, Plants, Biological Evolution, Introns, Chloroplast Thioredoxins, Thioredoxins, Amino Acid Sequence, Isomerases, Genome, Plant, Pisum sativum
Genetic Markers, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Arabidopsis, Protein Disulfide-Isomerases, Plants, Biological Evolution, Introns, Chloroplast Thioredoxins, Thioredoxins, Amino Acid Sequence, Isomerases, Genome, Plant, Pisum sativum
20 Research products, page 1 of 2
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- IsSupplementTo
- 2017IsRelatedTo
- IsSupplementTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).69 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
