<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Histone Deacetylase 5 Acquires Calcium/Calmodulin-Dependent Kinase II Responsiveness by Oligomerization with Histone Deacetylase 4

Histone Deacetylase 5 Acquires Calcium/Calmodulin-Dependent Kinase II Responsiveness by Oligomerization with Histone Deacetylase 4
Calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates histone deacetylase 4 (HDAC4), a class IIa HDAC, resulting in the cytosolic accumulation of HDAC4 and the derepression of the transcription factor myocyte enhancer factor 2. Phosphorylation by CaMKII requires docking of the kinase to a specific domain of HDAC4 not present in other HDACs. Paradoxically, however, CaMKII signaling can also promote the nuclear export of other class IIa HDACs, such as HDAC5. Here, we show that HDAC4 and HDAC5 form homo- and hetero-oligomers via a conserved coiled-coil domain near their amino termini. Whereas HDAC5 alone is unresponsive to CaMKII, it becomes responsive to CaMKII in the presence of HDAC4. The acquisition of CaMKII responsiveness by HDAC5 is mediated by HDAC5's direct association with HDAC4 and can occur by phosphorylation of HDAC4 or by transphosphorylation by CaMKII bound to HDAC4. Thus, HDAC4 integrates upstream Ca(2+)-dependent signals via its association with CaMKII and transmits these signals to HDAC5 by protein-protein interactions. We conclude that HDAC4 represents a point of convergence for CaMKII signaling to downstream HDAC-regulated genes, and we suggest that modulation of the interaction of CaMKII and HDAC4 represents a means of regulating CaMKII-dependent gene programs.
- The University of Texas Southwestern Medical Center United States
- Heidelberg University Germany
- Gilead Sciences (France) France
Binding Sites, Molecular Sequence Data, Models, Biological, Gene Expression Regulation, Enzymologic, Histone Deacetylases, Recombinant Proteins, Cell Line, Protein Structure, Tertiary, Histone Deacetylase Inhibitors, Repressor Proteins, Mice, Multiprotein Complexes, COS Cells, Chlorocebus aethiops, Animals, Amino Acid Sequence, Phosphorylation, RNA, Small Interfering, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Protein Structure, Quaternary
Binding Sites, Molecular Sequence Data, Models, Biological, Gene Expression Regulation, Enzymologic, Histone Deacetylases, Recombinant Proteins, Cell Line, Protein Structure, Tertiary, Histone Deacetylase Inhibitors, Repressor Proteins, Mice, Multiprotein Complexes, COS Cells, Chlorocebus aethiops, Animals, Amino Acid Sequence, Phosphorylation, RNA, Small Interfering, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Protein Structure, Quaternary
22 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).164 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%