Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2008 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Acetylation of Conserved Lysines in the Catalytic Core of Cyclin-Dependent Kinase 9 Inhibits Kinase Activity and Regulates Transcription

Authors: SABO A; LUSIC M; CERESETO A; GIACCA, MAURO;

Acetylation of Conserved Lysines in the Catalytic Core of Cyclin-Dependent Kinase 9 Inhibits Kinase Activity and Regulates Transcription

Abstract

Promoter clearance and transcriptional processivity in eukaryotic cells are fundamentally regulated by the phosphorylation of the carboxy-terminal domain of RNA polymerase II (RNAPII). One of the kinases that essentially performs this function is P-TEFb (positive transcription elongation factor b), which is composed of cyclin-dependent kinase 9 (CDK9) associated with members of the cyclin T family. Here we show that cellular GCN5 and P/CAF, members of the GCN5-related N-acetyltransferase family of histone acetyltransferases, regulate CDK9 function by specifically acetylating the catalytic core of the enzyme and, in particular, a lysine that is essential for ATP coordination and the phosphotransfer reaction. Acetylation markedly reduces both the kinase function and transcriptional activity of P-TEFb. In contrast to unmodified CDK9, the acetylated fraction of the enzyme is specifically found in the insoluble nuclear matrix compartment. Acetylated CDK9 associates with the transcriptionally silent human immunodeficiency virus type 1 provirus; upon transcriptional activation, it is replaced by the unmodified form, which is involved in the elongating phase of transcription marked by Ser2-phosphorylated RNAPII. Given the conservation of the CDK9 acetylated residues in the catalytic task of virtually all CDK proteins, we anticipate that this mechanism of regulation might play a broader role in controlling the function of other members of this kinase family.

Keywords

Acetylation, Adenosine Triphosphate; metabolism, Catalytic Domain, Cell Compartmentation, Cell Line, Cyclin T, Cyclin-Dependent Kinase 9; antagonists /&/ inhibitors/chemistry/genetics/metabolism, Cyclins; metabolism, DNA; Viral; metabolism, HIV-1; genetics, Humans, Lysine; chemistry/physiology, Monocytes; enzymology, Phosphorylation, Phosphoserine; metabolism, Positive Transcriptional Elongation Factor B; metabolism, Protein Processing; Post-Translational; physiology, Proviruses; genetics, RNA Polymerase II; metabolism, Recombinant Fusion Proteins; physiology, Transcription; Genetic; physiology, Virus Latency, Cyclin T, Lysine, Recombinant Fusion Proteins, Acetylation, Cyclin-Dependent Kinase 9, Monocytes, Cell Compartmentation, Cell Line, Phosphoserine, Adenosine Triphosphate, Proviruses, Catalytic Domain, Cyclins, DNA, Viral, HIV-1, Humans, Positive Transcriptional Elongation Factor B, RNA Polymerase II, Phosphorylation, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%
bronze