Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neuro-Onc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuro-Oncology
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Metastasis tumor-associated protein-2 knockdown suppresses the proliferation and invasion of human glioma cells in vitro and in vivo

Authors: Chun-Yuan, Cheng; Ying-Erh, Chou; Chung-Po, Ko; Shun-Fa, Yang; Shu-Ching, Hsieh; Chia-Liang, Lin; Yi-Hsien, Hsieh; +1 Authors

Metastasis tumor-associated protein-2 knockdown suppresses the proliferation and invasion of human glioma cells in vitro and in vivo

Abstract

Metastasis tumor-associated protein 2 (MTA2) is a member of the MTA family that is closely associated with tumor progression and metastasis. However, the role of MTA2 in glioma cells remains unclear. The expression of MTA2 was measured using immunohistochemistry and western blotting in the human brain tumor tissue array and human glioma cell lines. The impact of MTA2 knockdown on GBM8401 and Hs683 cell growth was evaluated by MTT assay and flow cytometry. Cell migration and invasion were analyzed by cell-migration assay and Matrigel invasion assay. In addition, we used subcutaneous tumor models to study the effect of MTA2 on the growth of glioma cells in vivo. We found that MTA2 protein and mRNA expression are higher in GBM8401 and Hs683 cells than in other glioma cells (M059 J, M059 K and U-87 MG), and glioma tumor tissue correlated significantly with tumor grade (P < 0.001). Knockdown of MTA2 expression significantly inhibited cell growth, cell migration and invasion, and induced G0/G1 phase arrest in human GBM8401 and Hs683 cells in vitro. Moreover, in vivo studies using subcutaneous xenografts in mice models indicate that MTA2 knockdown significantly inhibited tumorigenicity. These results indicate that MTA2 plays an important oncogenic role in the development and progression of gliomas.

Keywords

Male, Mice, Inbred BALB C, Brain Neoplasms, Blotting, Western, Brain, Mice, Nude, Apoptosis, Glioma, In Vitro Techniques, Middle Aged, Flow Cytometry, Histone Deacetylases, Immunoenzyme Techniques, Mice, Cell Movement, Case-Control Studies, Animals, Humans, Female, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%