Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Death and Diffe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Death and Differentiation
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions

Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo

Authors: Nittner, D.; Marine, J-c; Vandesompele, J.; Lambertz, I.; Dyer, M. A.; Mestdagh, P.; Denecker, G.;

Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo

Abstract

Human tumors are characterized by widespread reduction in microRNA (miRNA) expression, although it is unclear how such changes come about and whether they have an etiological role in the disease. Importantly, miRNA knockdown has been shown to enhance the tumorigenic potential of human lung adenocarcinoma cells. A defect in miRNA processing is one possible mechanism for global downregulation. To explore this possibility in more detail in vivo, we have manipulated Dicer1 gene dosage in a mouse model of retinoblastoma. We show that although monoallelic loss of Dicer1 does not affect normal retinal development, it dramatically accelerates tumor formation on a retinoblastoma-sensitized background. Importantly, these tumors retain one wild-type Dicer1 allele and exhibit only a partial decrease in miRNA processing. Accordingly, in silico analysis of human cancer genome data reveals frequent hemizygous, but not homozygous, deletions of DICER1. Strikingly, complete loss of Dicer1 function in mice did not accelerate retinoblastoma formation. miRNA profiling of these tumors identified members of the let-7 and miR-34 families as candidate tumor suppressors in retinoblastoma. We conclude that Dicer1 functions as a haploinsufficient tumor suppressor. This finding has implications for cancer etiology and cancer therapy.

Keywords

Mice, Knockout, Ribonuclease III, Genome, Human, Retinal Neoplasms, Tumor Suppressor Proteins, Retinoblastoma, Loss of Heterozygosity, DEAD-box RNA Helicases, Disease Models, Animal, Mice, MicroRNAs, Cell Transformation, Neoplastic, Haplotypes, Endoribonucleases, Animals, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    143
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
143
Top 10%
Top 10%
Top 1%
bronze
Funded by
Related to Research communities
Cancer Research