Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Characterization of the Mechanism of Cytochrome P450 Reductase-Cytochrome P450-mediated Nitric Oxide and Nitrosothiol Generation from Organic Nitrates

Authors: Haitao, Li; Xiaoping, Liu; Hongmei, Cui; Yeong-Renn, Chen; Arturo J, Cardounel; Jay L, Zweier;

Characterization of the Mechanism of Cytochrome P450 Reductase-Cytochrome P450-mediated Nitric Oxide and Nitrosothiol Generation from Organic Nitrates

Abstract

Mammalian cytochrome P450 reductase (CPR) and cytochrome P450 (CP) play important roles in organic nitrate bioactivation; however, the mechanism by which they convert organic nitrate to NO remains unknown. Questions remain regarding the initial precursor of NO that serves to link organic nitrate to the activation of soluble guanylyl cyclase (sGC). To characterize the mechanism of CPR-CP-mediated organic nitrate bioactivation, EPR, chemiluminescence NO analyzer, NO electrode, and immunoassay studies were performed. With rat hepatic microsomes or purified CPR, the presence of NADPH triggered organic nitrate reduction to NO2(-). The CPR flavin site inhibitor diphenyleneiodonium inhibited this NO2(-) generation, whereas the CP inhibitor clotrimazole did not. However, clotrimazole greatly inhibited NO2(-)-dependent NO generation. Therefore, CPR catalyzes organic nitrate reduction, producing nitrite, whereas CP can mediate further nitrite reduction to NO. Nitrite-dependent NO generation contributed <10% of the CPR-CP-mediated NO generation from organic nitrates; thus, NO2(-) is not the main precursor of NO. CPR-CP-mediated NO generation was largely thiol-dependent. Studies suggested that organic nitrite (R-O-NO) was produced from organic nitrate reduction by CPR. Further reaction of organic nitrite with free or microsome-associated thiols led to NO or nitrosothiol generation and thus stimulated the activation of sGC. Thus, organic nitrite is the initial product in the process of CRP-CP-mediated organic nitrate activation and is the precursor of NO and nitrosothiols, serving as the link between organic nitrate and sGC activation.

Related Organizations
Keywords

Nitrates, Electron Spin Resonance Spectroscopy, Hydrogen-Ion Concentration, Nitric Oxide, Rats, Kinetics, Cytochrome P-450 Enzyme System, Guanylate Cyclase, Microsomes, Liver, Animals, Sulfhydryl Compounds, NADPH-Ferrihemoprotein Reductase, Nitroso Compounds

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
gold