Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Critical Reviews in ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Critical Reviews in Oncology/Hematology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Male breast cancer is not congruent with the female disease

Authors: Ian S, Fentiman;

Male breast cancer is not congruent with the female disease

Abstract

It has become customary to extrapolate from the results of treatment trials for female breastcancer and apply them to males with the disease. In the absence of results from national and international randomised trials for male breast cancer (MBC) this appears superficially to be an appropriate response. Closer examination of available data reveals that aspects of the aetiology and treatment of MBC do not fit the simplistic model that men usually have endocrine sensitive tumours which behave like those in postmenopausal women. Most females and males with breast cancer have none of the recognised risk factors, indicating the gaps in our knowledge of the epidemiology of this disease. Several studies have compared epidemiological risk factors for MBC and female breast cancer (FBC) but many have been blighted by small numbers. In comparison with FBC there is a larger proportion of BRCA2 tumours, (occurring in 10% of MBC), and underrepresentation of BRCA1 tumours (found in only 1%), suggesting significant differences in the genetic aetiology of MBC and FBC. Genome-wide association studies in FBC reported single nucleotide polymorphisms (SNPs) in 12 novel independent loci were consistently associated with disease but for MBC 2 SNPs had a significantly increased risk. Molecular profiles of matched cancers in males and females showed a gender-associated modulation of major processes including energy metabolism, regulation of translation, matrix remodelling and immune recruitment. Immunohistochemistry for kinase inhibitor proteins (KIPs) p27Kip1 and p21Waf1 indicate a significant difference in the immunostaining of tumours from male patients compared with females. MBC is almost always estrogen receptor positive (ER+ve) and so systemic treatment is usually endocrine. With evidence in FBC that aromatase inhibitors are more effective than tamoxifen in the postmenopausal it was seemingly logical that the same would be true for MBC. Results however suggest less efficacy with AIs and an increase in risk of mortality compared to tamoxifen. The overall survival in male breast cancer was significantly better after adjuvant treatment with tamoxifen compared to an aromatase inhibitor. These important biological differences point the way to the development of new therapies for MBC based on differences rather than similarities with FBC.

Keywords

Gene Expression Regulation, Neoplastic, Male, Risk Factors, Humans, Breast Neoplasms, Endocrine System, Female, Breast Neoplasms, Male, Epigenesis, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research