Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Human Gen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Human Genetics
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Mutation of ARHGAP9 in patients with coronary spastic angina

Authors: Yasuhiro Morita; Fumimaro Takatsu; Takashi Watanabe; Mitsuhiro Yokota; Tadaomi Takenawa; Mikito Takefuji; Akihiro Hirashiki; +11 Authors

Mutation of ARHGAP9 in patients with coronary spastic angina

Abstract

Coronary artery spasm has an important function in the etiology of variant angina and other acute coronary syndromes. Abnormal activation of Rho-family GTPases has been observed in cardiovascular disorders, but the function of genetic variability in Rho-family GTPases remains to be evaluated in cardiovascular disorders. We examined the genetic variability of Rho-family GTPases and their regulators in coronary artery spasm. We performed a comprehensive candidate gene analysis of 67 single nucleotide polymorphisms with amino-acid substitution in Rho-family GTPases and their regulators in 103 unrelated Japanese patients with acetylcholine-induced coronary artery spasm and 102 control Japanese subjects without acetylcholine-induced coronary artery spasm. We noted an association of the single nucleotide polymorphism of ARHGAP9 (rs11544238, Ala370Ser) with coronary artery spasm (odds ratio =2.67). We found that ARHGAP9 inactivated Rac as RacGAP and that the mRNA level of ARHGAP9 was strongly detected in hematopoietic cells. ARHGAP9 negatively regulated cell migration. The Ala370Ser polymorphism counteracted ARHGAP9-reduced cell migration, spreading and adhesion. The Ala370Ser polymorphism in the ARHGAP9 gene is associated with coronary artery spasm. These data suggest that the polymorphism of ARHGAP9 has a critical function in the infiltration of hematopoietic cells into the endothelium and inflammation leading to endothelial dysfunction.

Keywords

Angina Pectoris, Variant, Male, GTPase-Activating Proteins, Coronary Vasospasm, Coronary Angiography, Polymorphism, Single Nucleotide, Acetylcholine, Jurkat Cells, Japan, Mutation, Humans, Female, Genetic Predisposition to Disease, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Average
bronze