Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Developmental Bi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Developmental Biology
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Developmental Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2008
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Control of cell cycle entry and exiting from the second mitotic wave in the Drosophiladeveloping eye

Authors: Wei Du; Madina Sukhanova;

Control of cell cycle entry and exiting from the second mitotic wave in the Drosophiladeveloping eye

Abstract

In the morphogenetic furrow (MF) of the Drosophila developing eye, all cells arrest in G1 and photoreceptor cell differentiation initiates. As the cells exit the MF, Notch signaling is required for the uncommitted cells to enter a synchronous round of cell division referred to as the "second mitotic wave" (SMW). How cell cycle entry and exit in SMW is regulated remains unclear. Recent studies have suggested that Notch signaling controls S phase in the SMW by regulating Cyclin A and the E2F transcription factor independent of Cyclin E. In this manuscript, we investigate the developmental regulation of cell cycle entry into and exit from SMW.We demonstrate here that Cyclin E-dependent kinase activity is required for S phase entry in SMW. We show that removal of Su(H), a key transcription factor downstream of Notch signaling, blocks G1/S transition in SMW with strong upregulation of the Cyclin E/Cdk2 inhibitor Dacapo (Dap). We further show that the upregulation of Dap, which is mediated by bHLH protein Daughterless (Da), is important for cell cycle arrest of Su(H) mutant cells in SMW. Finally we show that removal of Dap leads to additional cell proliferation and an accumulation of the non-photoreceptor cells in the Drosophila developing eye.Our data demonstrate that Cyclin E/Cdk2 kinase activity is absolutely required for S phase in SMW, and that Dap is required for the proper cell cycle arrest of cells exiting the SMW. In addition, our results suggest that the G1 arrest of notch and Su(H) mutant cells in the SMW are regulated by distinct mechanisms, and that the upregulation of Dap contributes the G1 arrest of Su(H) mutant cells.

Related Organizations
Keywords

Cyclin-Dependent Kinase 2, G1 Phase, Gene Expression Regulation, Developmental, Mitosis, Nuclear Proteins, Eye, Clone Cells, Up-Regulation, DNA-Binding Proteins, Repressor Proteins, Drosophila melanogaster, Cyclin E, Basic Helix-Loop-Helix Transcription Factors, Animals, Drosophila Proteins, Mutant Proteins, Developmental Biology, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
Green
gold