Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cell
Article . 2006
versions View all 4 versions

Histone Deacetylase 7 Maintains Vascular Integrity by Repressing Matrix Metalloproteinase 10

Authors: Chang, Shurong; Young, Bryan D.; Li, Shijie; Qi, Xiaoxia; Richardson, James A.; Olson, Eric N.;

Histone Deacetylase 7 Maintains Vascular Integrity by Repressing Matrix Metalloproteinase 10

Abstract

Development and homeostasis of the cardiovascular system require intimate interactions between endothelial and smooth muscle cells, which form a seamless circulatory network. We show that histone deacetylase 7 (HDAC7) is specifically expressed in the vascular endothelium during early embryogenesis, where it maintains vascular integrity by repressing the expression of matrix metalloproteinase (MMP) 10, a secreted endoproteinase that degrades the extracellular matrix. Disruption of the HDAC7 gene in mice results in embryonic lethality due to a failure in endothelial cell-cell adhesion and consequent dilatation and rupture of blood vessels. HDAC7 represses MMP10 gene transcription by associating with myocyte enhancer factor-2 (MEF2), a direct activator of MMP10 transcription and essential regulator of blood vessel development. These findings reveal an unexpected and specific role for HDAC7 in the maintenance of vascular integrity and have important implications for understanding the processes of angiogenesis and vascular remodeling during cardiovascular development and disease.

Keywords

Mice, Knockout, Biochemistry, Genetics and Molecular Biology(all), Chimera, Cell Culture Techniques, Gene Expression Regulation, Developmental, Metalloendopeptidases, Gene Expression Regulation, Enzymologic, Histone Deacetylases, Cell Line, Extracellular Matrix, Mice, Inbred C57BL, Mice, Matrix Metalloproteinase 10, Genes, Reporter, Animals, Blood Vessels, Humans, Endothelium, Vascular, Luciferases, Aorta, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    419
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
419
Top 1%
Top 1%
Top 1%
hybrid