Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Sciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Science
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Putrescine is involved in root cell wall phosphorus remobilization in a nitric oxide dependent manner

Authors: Huai Kang Jing; Qi Wu; Jing Huang; Xiao Zheng Yang; Ye Tao; Ren Fang Shen; Xiao Fang Zhu;

Putrescine is involved in root cell wall phosphorus remobilization in a nitric oxide dependent manner

Abstract

Phosphorus (P) deficiency is a key limited factor to affect the crop production in rice (Oryza sativa). Recently, accumulating evidences have shown that root cell wall P reutilization could be released to the cytoplasm to alleviate the P starvation and a set of plant hormone and signal molecules have been identified to be involved in it. However, the role of putrescine (Put) in this process is still unknown. In this study, we found that Put with a concentration of 0.001 mM, 0.01 mM and 0.1 mM increased the root and shoot biomass in Nipponbare (Nip) and Kasalath (Kas) under P deficiency, although only 0.1 mM Put could significantly elevated the root and shoot soluble P concentration in Nip. Exogenous 0.1 mM Put treatment reduced the root cell wall P content through increasing the pectin content and pectin methylesterase (PME) activity, indicating that Put can be involved in the root cell wall P reutilization under P starvation. In addition, Put treatment also stimulated the root-to-shoot translocation of P through upregulating the expression of PHOSPHORUS TRANSPORTER 2 (OsPT2) and OsPT8 that responsible for the long-distance transport. Put under P-deficient condition significantly enhanced the Nitric Oxide (NO) accumulation in root and the application of NO inhibitor carboxy-PTIO (cPTIO) could reverse the Put-alleviated P-deficient phenotype, suggesting this process is mediated by NO. In conclusion, our results demonstrated that Put acts upstream of NO to activate the root cell wall P remobilization in rice.

Related Organizations
Keywords

Cell Wall, Putrescine, Oryza, Phosphorus, Nitric Oxide, Plant Roots

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%