Putrescine is involved in root cell wall phosphorus remobilization in a nitric oxide dependent manner
pmid: 35151453
Putrescine is involved in root cell wall phosphorus remobilization in a nitric oxide dependent manner
Phosphorus (P) deficiency is a key limited factor to affect the crop production in rice (Oryza sativa). Recently, accumulating evidences have shown that root cell wall P reutilization could be released to the cytoplasm to alleviate the P starvation and a set of plant hormone and signal molecules have been identified to be involved in it. However, the role of putrescine (Put) in this process is still unknown. In this study, we found that Put with a concentration of 0.001 mM, 0.01 mM and 0.1 mM increased the root and shoot biomass in Nipponbare (Nip) and Kasalath (Kas) under P deficiency, although only 0.1 mM Put could significantly elevated the root and shoot soluble P concentration in Nip. Exogenous 0.1 mM Put treatment reduced the root cell wall P content through increasing the pectin content and pectin methylesterase (PME) activity, indicating that Put can be involved in the root cell wall P reutilization under P starvation. In addition, Put treatment also stimulated the root-to-shoot translocation of P through upregulating the expression of PHOSPHORUS TRANSPORTER 2 (OsPT2) and OsPT8 that responsible for the long-distance transport. Put under P-deficient condition significantly enhanced the Nitric Oxide (NO) accumulation in root and the application of NO inhibitor carboxy-PTIO (cPTIO) could reverse the Put-alleviated P-deficient phenotype, suggesting this process is mediated by NO. In conclusion, our results demonstrated that Put acts upstream of NO to activate the root cell wall P remobilization in rice.
- University of Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- State Key Laboratory of Soil and Sustainable Agriculture China (People's Republic of)
- Institute of Soil Science China (People's Republic of)
Cell Wall, Putrescine, Oryza, Phosphorus, Nitric Oxide, Plant Roots
Cell Wall, Putrescine, Oryza, Phosphorus, Nitric Oxide, Plant Roots
2 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
