Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1002/brb3.2...
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://onlinelibrary.wiley.co...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/18187...
Article . 2021
Data sources: DOAJ
versions View all 4 versions

miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats

Authors: Kaixuan Wang; Jing Wu; Jiangping Wang; Kewen Jiang;

miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats

Abstract

AbstractAimDrug‐resistant epilepsy (DRE), most subsequently developing refractory epilepsy, causes a significant burden to the society. microRNAs have been demonstrated as key regulators and therapeutic targets in epilepsy. Accordingly, the aim of the present study was to test whether miR‐485 could be a potential target for DRE.Methods and resultsAn in vivo DRE model was developed in Sprague–Dawley rats by lithium chloride‐pilocarpine and screened by antiepileptic drugs. We found that miR‐485‐5p in hippocampus was significant downregulated at early stage and recovered to normal level at late stage of DRE. Overexpression of miR‐485‐5p in dentate gyrus (DG) of hippocampus in DRE rats could significantly decrease the frequency of seizures and the numbers of epileptiform spikes of hippocampal DG neuron, and could specifically decrease SV2A expression without affecting PSD‐95 expression in DG. Furthermore, miR‐485‐5p overexpression could significantly downregulate the expression of efflux transporter related to multidrug resistance (ABCC1) in hippocampus at late stage of DRE. Finally, a specific expression pattern of neuronal signaling‐transduction proteins (LRP4, MDM4, p53, and TMBIM1) for DRE was observed, and miR‐485‐5p overexpression could modulate these proteins’ expression levels toward normal in hippocampus both at early and late stage of DRE.ConclusionCollectively, these results suggest that miR‐485 was a potential target for anti‐DRE, and this effects might be partially via miR‐485‐5p/homeostatic‐synaptic plasticity‐molecule axis and/or targeting efflux transporter (ABCC1) and other neuronal signaling‐transduction proteins (LRP4, MDM4, p53, and TMBIM1).

Related Organizations
Keywords

Neurons, Drug Resistant Epilepsy, Membrane Glycoproteins, hippocampus, Neurosciences. Biological psychiatry. Neuropsychiatry, Nerve Tissue Proteins, Hippocampus, Rats, Rats, Sprague-Dawley, MicroRNAs, miR‐485, drug‐resistant epilepsy, drug‐resistant‐related protein, neuronal signaling‐transduction protein, PSD‐95, Animals, RC321-571, Original Research

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
Green
gold