Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cancer Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Letters
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Small molecular anticancer agent SKLB703 induces apoptosis in human hepatocellular carcinoma cells via the mitochondrial apoptotic pathway in vitro and inhibits tumor growth in vivo

Authors: Li Yang; Yong-qiu Mao; Yinglan Zhao; Qian Bu; Shengyong Yang; Hongjun Lin; Youzhi Xu; +4 Authors

Small molecular anticancer agent SKLB703 induces apoptosis in human hepatocellular carcinoma cells via the mitochondrial apoptotic pathway in vitro and inhibits tumor growth in vivo

Abstract

Inducing apoptosis is a promising therapeutic approach to overcome cancer. Here we described that a novel synthesized compound, 3-amino-N-(4-chlorobenzyl)-6-(3-methoxyphenyl)thieno[2,3-b]pyridine-2-carboxamide (SKLB703), exhibits antitumor activity via inducing apoptosis both invitro and invivo. Our results showed that SKLB703 inhibited the proliferation of a panel of human cancer cell lines, and human hepatocellular carcinoma cell line HepG2 was the most sensitive. The proliferation inhibitory effect of SKLB703 was associated with its apoptosis-inducing effect by activating caspase-3 and caspase-9 rather than caspase 8. Exposure of HepG2 to SKLB703 also resulted in Bax upregulation, Bcl-2 downregulation, cytochrome c release and mitochondrial transmembrane potential change in mitochondrial apoptotic pathway. Moreover, the decrease of phosphorylated p 44/42 mitogen-activated protein kinase and phosphorylated Akt was observed. SKLB703 suppressed the growth of established tumors in xenograft models in mice, whereas no toxicity was exhibited. TUNAL analysis showed that SKLB703 induced HepG2 tumor apoptosis. Taken together, the present study demonstrates that SKLB730 exhibits its antitumor activity through inducing apoptosis via mitochondrial apoptotic pathway. Its potential to be a candidate of anticancer agent is worth being further investigated.

Related Organizations
Keywords

Male, Membrane Potential, Mitochondrial, Mice, Inbred BALB C, Carcinoma, Hepatocellular, Dose-Response Relationship, Drug, Blotting, Western, Mice, Nude, Antineoplastic Agents, Apoptosis, Hep G2 Cells, Mitochondria, Enzyme Activation, Mice, Liver Neoplasms, Experimental, Caspases, Animals, Humans, Female, Mitogen-Activated Protein Kinases, K562 Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%
Related to Research communities
Cancer Research