Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heredityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heredity
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Heredity
Article . 1992 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Heredity
Article . 1992
versions View all 2 versions

Location of X-linked polygenic effects causing sterility in male hybrids of Drosophila simulans and D. mauritiana

Authors: H F, Naveira;

Location of X-linked polygenic effects causing sterility in male hybrids of Drosophila simulans and D. mauritiana

Abstract

There is general agreement that hybrid male sterility in Drosophila is caused by changes at several (perhaps many) factors, most of them located on the X chromosome. These factors have been generally considered as major genes, each one of them able to bring about sterility by itself. However, the evidence on this last point is not conclusive. In principle, the possibility that they correspond to located polygenic effects instead of genes with a large effect cannot be excluded. This paper shows that some of the factors that cause male sterility in D. simulans/D. mauritiana hybrids, located by recombination on the X chromosome, are indeed 'effective factors', or located polygenic effects. Some of the consequences of this finding are explored.

Related Organizations
Keywords

Male, Recombination, Genetic, X Chromosome, Genetic Linkage, Animals, Hybridization, Genetic, Drosophila, Female, Crosses, Genetic, Infertility, Male

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
bronze