Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2014 . Peer-reviewed
Data sources: Crossref
Development
Article . 2006 . Peer-reviewed
Data sources: Crossref
Development
Article . 2006
versions View all 4 versions

Distinct roles of Polycomb group gene products in transcriptionally repressed and active domains of Hoxb8

Authors: Fujimura, Y.; Isono, K.; Vidal, M.; Endoh, M.; Kajita, H.; Mizutani-Koseki, Y.; Takihara, Y.; +5 Authors

Distinct roles of Polycomb group gene products in transcriptionally repressed and active domains of Hoxb8

Abstract

To address the molecular mechanisms underlying Polycomb group(PcG)-mediated repression of Hox gene expression, we have focused on the binding patterns of PcG gene products to the flanking regions of the Hoxb8 gene in expressing and non-expressing tissues. In parallel, we followed the distribution of histone marks of transcriptionally active H3 acetylated on lysine 9 (H3-K9) and methylated on lysine 4 (H3-K4), and of transcriptionally inactive chromatin trimethylated on lysine 27 (H3-K27). Chromatin immunoprecipitation revealed that the association of PcG proteins,and H3-K9 acetylation and H3-K27 trimethylation around Hoxb8 were distinct in tissues expressing and not expressing the gene. We show that developmental changes of these epigenetic marks temporally coincide with the misexpression of Hox genes in PcG mutants. Functional analyses, using mutant alleles impairing the PcG class 2 component Rnf2 or the Suz12mutation decreasing H3-K27 trimethylation, revealed that interactions between class 1 and class 2 PcG complexes, mediated by trimethylated H3-K27, play decisive roles in the maintenance of Hox gene repression outside their expression domain. Within the expression domains, class 2 PcG complexes appeared to maintain the transcriptionally active status via profound regulation of H3-K9 acetylation. The present study indicates distinct roles for class 2 PcG complexes in transcriptionally repressed and active domains of Hoxb8 gene.

Keywords

Homeodomain Proteins, Mice, Knockout, Polycomb Repressive Complex 1, Transcription, Genetic, Ubiquitin-Protein Ligases, Polycomb Repressive Complex 2, Gene Expression Regulation, Developmental, Polycomb-Group Proteins, Embryo, Mammalian, Cell Line, DNA-Binding Proteins, Histones, Repressor Proteins, Mice, 616, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities