Powered by OpenAIRE graph

The integrated response of primary metabolites to gene deletions and the environment

Authors: Jennifer Christina, Ewald; Tanja, Matt; Nicola, Zamboni;

The integrated response of primary metabolites to gene deletions and the environment

Abstract

Intracellular metabolites arise from the molecular integration of genomic and environmental factors that jointly determine metabolic activity. However, it is not clear how the interplay of genotype, nutrients, growth, and fluxes affect metabolite concentrations globally. Here we used quantitative metabolomics to assess the combined effect of environment and genotype on the metabolite composition of a yeast cell. We analyzed a panel of 34 yeast single-enzyme knockout mutants grown on three archetypical carbon sources, generating a dataset of 400 unique metabolome samples. The different carbon sources globally affected the concentrations of intermediates, both directly, by changing the thermodynamic potentials (Δ(r)G) as a result of the substrate influx, and indirectly, by cellular regulation. In contrast, enzyme deletion elicited only local accumulation of the metabolic substrate immediately upstream of the lesion. Key biosynthetic precursors and cofactors were generally robust under all tested perturbations in spite of changes in fluxes and growth rate.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Ethanol, Galactose, Saccharomyces cerevisiae, Isoenzymes, Glucose, Metabolome, Carbohydrate Metabolism, Thermodynamics, Gene-Environment Interaction, Gene Deletion, Metabolic Networks and Pathways

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%