Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Entamoeba histolytica Exacerbates Epithelial Tight Junction Permeability and Proinflammatory Responses in Muc2 Mice

Authors: Vanessa, Kissoon-Singh; France, Moreau; Elizabeth, Trusevych; Kris, Chadee;

Entamoeba histolytica Exacerbates Epithelial Tight Junction Permeability and Proinflammatory Responses in Muc2 Mice

Abstract

Human mucin-2 (MUC-2) is the first line of innate host defense in preventing pathogen-induced epithelial injury. Entamoeba histolytica (Eh) colonizes the mucus layer by binding of the parasite's surface galactose lectin to galactose and N-acetyl-d-galactosamine residues on colonic MUC-2, preventing parasite contact-dependent cytolysis of epithelial cells. We quantified early innate responses to Eh in wild-type and MUC-2-deficient mice (Muc2(-/-)) using closed colonic loops. Eh infection in wild-type but not Muc2(-/-) mice induced a time-dependent increase in (3)H-labeled mucin and nonmucin glycoprotein secretions. Immunohistochemical staining revealed intense MUC-2 secretion, which formed a thick, protective mucus plug overlying the surface epithelium, entrapping Eh. In Muc2(-/-) mice, Eh induced a pronounced time-dependent secretory exudate with increased gross pathology scores and serum albumin leakage. Colonic pathology, secretory responses, and increased proinflammatory cytokine secretions of TNF-α, IFN-γ, and IL-13 correlated with altered expression of the tight junction proteins claudin-2, occludin, and ZO-1. We identified the putative Eh virulence factor that elicits the proinflammatory responses and alters tight junction permeability as Eh cysteine protease A5 (EhCP-A5). The present findings demonstrate that colonic mucins confer both luminal and epithelial barrier functions and that, in the absence of MUC-2, mice are more susceptible to Eh-induced secretory and proinflammatory responses mediated by EhCP-A5.

Related Organizations
Keywords

Mucin-2, Blood Cells, Tight Junction Proteins, Colon, Virulence Factors, Entamoeba histolytica, Epithelial Cells, Permeability, Tight Junctions, Intestines, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Animals, Humans, Goblet Cells, Inflammation Mediators

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
hybrid