Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2008
versions View all 2 versions

Foxj1 transcription factors are master regulators of the motile ciliogenic program

Authors: Xianwen, Yu; Chee Peng, Ng; Hermann, Habacher; Sudipto, Roy;

Foxj1 transcription factors are master regulators of the motile ciliogenic program

Abstract

Motile cilia induce fluid movement through their rhythmic beating activity. In mammals, the transcription factor Foxj1 has been implicated in motile cilia formation. Here we show that a zebrafish Foxj1 homolog, foxj1a, is a target of Hedgehog signaling in the floor plate. Loss of Foxj1a compromises the assembly of motile cilia that decorate floor plate cells. Besides the floor plate, foxj1a is expressed in Kupffer's vesicle and pronephric ducts, where it also promotes ciliary differentiation. We show that Foxj1a activates a constellation of genes essential for motile cilia formation and function, and that its activity is sufficient for ectopic development of cilia that resemble motile cilia. We also document that a paralogous gene, foxj1b, is expressed in the otic vesicle and seems to regulate motile cilia formation in this tissue. Our findings identify a dedicated master regulatory role for Foxj1 in the transcriptional program that controls the production of motile cilia.

Keywords

Molecular Sequence Data, Animals, Forkhead Transcription Factors, Hedgehog Proteins, Cilia, Zebrafish Proteins, Zebrafish, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    418
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
418
Top 1%
Top 1%
Top 1%