Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article . 2008 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
UNC Dataverse
Article . 2008
Data sources: Datacite
The Plant Cell
Article . 2008
versions View all 3 versions

Characterization of Arabidopsis and Rice DWD Proteins and Their Roles as Substrate Receptors for CUL4-RING E3 Ubiquitin Ligases

Authors: Jae-Hoon, Lee; William, Terzaghi; Giuliana, Gusmaroli; Jean-Benoit F, Charron; Hye-Jin, Yoon; Haodong, Chen; Yizhou Joseph, He; +2 Authors

Characterization of Arabidopsis and Rice DWD Proteins and Their Roles as Substrate Receptors for CUL4-RING E3 Ubiquitin Ligases

Abstract

Abstract A subset of WD40 proteins that contain a DWD motif (for DDB1 binding WD40) is reported to act as substrate receptors for DDB1-CUL4-ROC1 (for Damaged DNA Binding 1–Cullin 4–Regulator of Cullins 1) based E3 ubiquitin ligases in humans. Here, we report 85 Arabidopsis thaliana and 78 rice (Oryza sativa) proteins containing the conserved 16–amino acid DWD motif. We show by yeast two-hybrid and in vivo coimmunoprecipitation that 11 Arabidopsis DWD proteins directly interact with DDB1 and thus may serve as substrate receptors for the DDB1–CUL4 machinery. We further examine whether the DWD protein PRL1 (for Pleiotropic Regulatory Locus 1) may act as part of a CUL4-based E3 ligase. PRL1 directly interacts with DDB1, and prl1 and cul4cs mutants exhibited similar phenotypes, including altered responses to a variety of stimuli. Moreover, AKIN10 (for Arabidopsis SNF1 Kinase Homolog 10) was degraded more slowly in cell extracts of prl1 and cul4cs than in cell extracts of the wild type. Thus, both genetic and biochemical analyses support the conclusion that PRL1 is the substrate receptor of a CUL4-ROC1-DDB1-PRL1 E3 ligase involved in the degradation of AKIN10. This work adds a large new family to the current portfolio of plant E3 ubiquitin ligases.

Keywords

Cytokinins, Arabidopsis Proteins, Amino Acid Motifs, Arabidopsis, Carbohydrates, Intracellular Signaling Peptides and Proteins, Nuclear Proteins, Oryza, Cullin Proteins, Genes, Plant, Substrate Specificity, Anthocyanins, Phenotype, Seedlings, Mutation, Cotyledon, Protein Processing, Post-Translational, Abscisic Acid, Plant Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    230
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
230
Top 1%
Top 10%
Top 1%
hybrid