Powered by OpenAIRE graph

B cell Ag receptor mediates different types of signals in the protein kinase activity between immature B cell and mature B cell.

Authors: H, Igarashi; K, Kuwahara; J, Nomura; A, Matsuda; K, Kikuchi; S, Inui; N, Sakaguchi;

B cell Ag receptor mediates different types of signals in the protein kinase activity between immature B cell and mature B cell.

Abstract

Abstract Ig receptor (IgR) on the surface of B cells mediates the Ag-specific stimulatory signal for B cell proliferation and differentiation. In immature B cells, the stimulatory signal causes an inhibitory effect which is believed to be a key phenomenon in B cell tolerance or B cell anergy. Here, we studied the molecular mechanism of the inhibitory response of the IgR-mediated signal transduction that results in the programmed cell death of immature B cells. To analyze the downstream molecules of the IgR-mediated signal transduction, we prepared a mAb against a 160-kDa membrane protein (p160) that can coprecipitate the kinase molecule(s) acting on serine, threonine, and tyrosine residues. Anti-IgR stimulation induces the increase of the kinase activity coprecipitated with the p160 protein in mature B cell BAL17 and normal adult spleen B cells. This result suggest that the p160-associated kinase activity is one of the downstream events of the IgR-mediated signal transduction cascade. Interestingly, immature B cell lymphoma WEHI-231 and the neonatal spleen B cells showed the adverse reaction of the p160-associated kinase which results in the transient loss of the kinase activity. Moreover, the transient decrease of the p160-associated kinase was caused by the tyrosine phosphatase activity induced by the stimulation of IgR in WEHI-231. The results suggest that this molecular difference in the downstream events of the IgR-mediated signal transduction between immature B cells and mature B cells already begins at the transmembrane level in the IgR-mediated signal transduction pathway.

Related Organizations
Keywords

Blotting, Western, B-Lymphocyte Subsets, Antibodies, Monoclonal, Membrane Proteins, Mice, Nude, Receptors, Antigen, B-Cell, Antigen-Antibody Complex, Protein-Tyrosine Kinases, Precipitin Tests, Cell Line, Rats, Molecular Weight, Mice, Animals, Calcium, Protein Tyrosine Phosphatases, Rats, Wistar, Spleen, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%