Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

An Iron Enhancer Element in the FTN-1 Gene Directs Iron-dependent Expression in Caenorhabditis elegans Intestine

Authors: S Joshua, Romney; Colin, Thacker; Elizabeth A, Leibold;

An Iron Enhancer Element in the FTN-1 Gene Directs Iron-dependent Expression in Caenorhabditis elegans Intestine

Abstract

Ferritin is a ubiquitous protein that sequesters iron and protects cells from iron toxicity. Caenorhabditis elegans express two ferritins, FTN-1 and FTN-2, which are transcriptionally regulated by iron. To identify the cis-acting sequences and proteins required for iron-dependent regulation of ftn-1 and ftn-2 expression, we generated transcriptional GFP reporters corresponding to 5 '-upstream sequences of the ftn-1 and ftn-2 genes. We identified a conserved 63-bp sequence, the iron-dependent element (IDE), that is required for iron-dependent regulation of a ftn-1 GFP reporter in intestine. The IDE contains two GATA-binding motifs and three octameric direct repeats. Site-directed mutagenesis of the GATA sequences, singly or in combination, reduces ftn-1 GFP reporter expression in the intestine. In vitro DNA mobility shift assays show that the intestine-specific GATA protein ELT-2 binds to both GATA sequences. Inhibition of ELT-2 function by RNA interference blocks ftn-1 GFP reporter expression in vivo. Insertion of the IDE into the promoter region of a heterologous reporter activates iron-dependent transcription in intestine. These data demonstrate that the activation of ftn-1 and ftn-2 transcription by iron requires ELT-2 and that the IDE functions as an iron-dependent enhancer in intestine.

Related Organizations
Keywords

Base Sequence, Genotype, Iron, Molecular Sequence Data, Intestines, Enhancer Elements, Genetic, Gene Expression Regulation, Digestive System Physiological Phenomena, Genes, Reporter, Ferritins, Caenorhabditis, Animals, Protein Isoforms, RNA, Messenger, Caenorhabditis elegans, Conserved Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
gold