Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Cell
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Cell
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cancer Cell
Article . 2004
versions View all 4 versions

Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/−p53−/− mice

Authors: Romer, Justyna T.; Kimura, Hiromichi; Magdaleno, Susan; Sasai, Ken; Fuller, Christine; Baines, Helen; Connelly, Michele; +4 Authors

Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/−p53−/− mice

Abstract

Medulloblastoma is the most common malignant pediatric brain tumor. Current treatment is associated with major long-term side effects; therefore, new nontoxic therapies, targeting specific molecular defects in this cancer, need to be developed. We use a mouse model of medulloblastoma to show that inhibition of the Sonic Hedgehog (Shh) pathway provides a novel therapy for medulloblastoma. A small molecule inhibitor of the Shh pathway, HhAntag, blocked the function of Smoothened in mice with medulloblastoma. This resulted in suppression of several genes highly expressed in medulloblastoma, inhibition of cell proliferation, increase in cell death and, at the highest dose, complete eradication of tumors. Long-term treatment with HhAntag prolonged medulloblastoma-free survival. These findings support the development of Shh antagonists for the treatment of medulloblastoma.

Related Organizations
Keywords

Cancer Research, Dose-Response Relationship, Drug, Brain Neoplasms, Kruppel-Like Transcription Factors, Mice, Transgenic, Cell Biology, Smoothened Receptor, Zinc Finger Protein GLI1, Disease-Free Survival, Receptors, G-Protein-Coupled, Mice, Oncology, Trans-Activators, Tumor Cells, Cultured, Animals, Hedgehog Proteins, Cell Division, Medulloblastoma, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    486
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
486
Top 1%
Top 1%
Top 1%
hybrid