Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genomicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1995
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1995
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Homologs of Drosophila fushi-tarazu factor 1 map to mouse chromosome 2 and human chromosome 9q33

Authors: Taketo, M; Parker, K L; Howard, T A; Tsukiyama, T; Wong, M; Niwa, O; Morton, C C; +2 Authors

Homologs of Drosophila fushi-tarazu factor 1 map to mouse chromosome 2 and human chromosome 9q33

Abstract

SF-1, a nuclear receptor that regulates gene expression of the cytochrome P450 steroid hydroxylases, and ELP, an embryonal protein that suppresses expression of the Moloney murine leukemia virus LTR, are isoforms transcribed from the same gene by alternative promoter usage and splicing. This gene is the mammalian homolog of the Drosophila fushi-tarazu factor 1 (FTZ-F1) gene. We have mapped the mouse gene Ftzf1 to the proximal quarter of Chr 2 by a linkage analysis using interspecific backcross mice, and its human homolog FTZ1 to Chr 9q33 by fluorescence in situ hybridization. The mouse and human genes are located in the homologous regions of mouse Chr 2 and human Chr 9, respectively.

Keywords

Cytoplasmic and Nuclear, Genetic Linkage, RNA Splicing, Research Support, U.S. Gov't, P.H.S., Fushi Tarazu Transcription Factors, Receptors, Cytoplasmic and Nuclear, Research Support, P.H.S., Steroidogenic Factor 1, Chromosomes, Fluorescence, Promoter Regions, Mice, Genetic, Receptors, Journal Article, Animals, Humans, Non-U.S. Gov't, Promoter Regions, Genetic, In Situ Hybridization, In Situ Hybridization, Fluorescence, Homeodomain Proteins, Mice, Inbred C3H, Research Support, Non-U.S. Gov't, Chromosome Mapping, Inbred C3H, DNA-Binding Proteins, Repressor Proteins, U.S. Gov't, Chromosomes, Human, Pair 9, Human, Pair 9, Adrenal Insufficiency, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Average
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research