Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Syne-1, A Dystrophin- and Klarsicht-related Protein Associated with Synaptic Nuclei at the Neuromuscular Junction

Authors: Elizabeth D. Apel; R. Mark Grady; Joshua R. Sanes; Renate M. Lewis;

Syne-1, A Dystrophin- and Klarsicht-related Protein Associated with Synaptic Nuclei at the Neuromuscular Junction

Abstract

We describe a novel protein, Syne-1, that is associated with nuclear envelopes in skeletal, cardiac, and smooth muscle cells. Syne-1 contains multiple spectrin repeats similar to those found in dystrophin and utrophin, as well as a domain homologous to the carboxyl-terminal of Klarsicht, a protein associated with nuclei and required for a subset of nuclear migrations in Drosophila. In adult skeletal muscle fibers, levels of Syne-1 are highest in the nuclei that lie beneath the postsynaptic membrane at the neuromuscular junction. These nuclei are transcriptionally specialized, expressing genes for synaptic components at higher levels than extrasynaptic nuclei in the same cytoplasm. Syne-1 is the first protein found to be selectively associated with synaptic nuclei. Syne-1 becomes concentrated in synaptic nuclei postnatally. It remains synaptically enriched following denervation or degeneration/regeneration, and is also present at high levels in the central nuclei of dystrophic myotubes. The location and structure of Syne-1 suggest that it may participate in the migration of myonuclei in myotubes and/or their anchoring at the postsynaptic apparatus. Finally, we identify a homologous gene, syne-2, that is expressed in an overlapping but distinct pattern.

Related Organizations
Keywords

Nuclear Envelope, Gene Expression Profiling, Microfilament Proteins, Molecular Sequence Data, Muscle Fibers, Skeletal, Neuromuscular Junction, Fluorescent Antibody Technique, Membrane Transport Proteins, Muscle Proteins, Nerve Tissue Proteins, Cell Line, Dystrophin, Alternative Splicing, Cytoskeletal Proteins, Mice, Animals, Drosophila Proteins, Humans, Insect Proteins, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    240
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
240
Top 10%
Top 1%
Top 10%
gold