Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2004 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Synaptic Strengthening Mediated by Bone Morphogenetic Protein-Dependent Retrograde Signaling in theDrosophilaCNS

Authors: Baines, Richard A.;

Synaptic Strengthening Mediated by Bone Morphogenetic Protein-Dependent Retrograde Signaling in theDrosophilaCNS

Abstract

Retrograde signaling is an essential component of synaptic development and physiology. Previous studies show that bone morphogenetic protein (BMP)-dependent retrograde signaling is required for the proper development of the neuromuscular junction (NMJ) inDrosophila. These studies, moreover, raised the significant possibility that the development of central motor circuitry might similarly be reliant on such signaling. To test this hypothesis, retrograde signaling between postsynaptic motoneurons and their presynaptic interneurons is examined. Postsynaptic expression of an adenylate cyclase encoded byrutabaga(rut), is sufficient to strengthen synaptic transmission at these identified central synapses. Results are presented to show that the underlying mechanism is dependent on BMP retrograde signaling. Thus, presynaptic expression of an activated TGF-β receptor, thickvien (tkv), or postsynaptic expression of a TGF-β ligand,glass-bottom boat(gbb), is sufficient to phenocopy strengthening of synaptic transmission. In the absence ofgbb, endogenous synaptic transmission is significantly weakened and, moreover, postsynaptic overexpression ofrutis unable to potentiate synaptic function. Potentiation of presynaptic neurotransmitter release, mediated by increased postsynaptic expression ofgbb, is dependent on normal cholinergic activity, indicative that either the secretion of this retrograde signal, or its transduction, is activity dependent. Thus, in addition to the development of the NMJ and expression of myoactive FMRFamide-like peptides in specific central neurons, the results of the present study indicate that this retrograde signaling cascade also integrates the development and function of central motor circuitry that controls movement inDrosophilalarvae.

Related Organizations
Keywords

Central Nervous System, Neural activity, Synaptic development, Synaptic Transmission, RP2, Transforming Growth Factor beta, Larva, Synapses, Animals, Drosophila Proteins, Drosophila, Gbb, aCC, Retrograde signaling, Adenylyl Cyclases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
hybrid