<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Adrenal steroids in the brain: Role of the intrinsic expression of corticosteroid-binding globulin (CBG) in the stress response

pmid: 24246737
Adrenal steroids in the brain: Role of the intrinsic expression of corticosteroid-binding globulin (CBG) in the stress response
The complex interaction between hypothalamus, pituitary and adrenal glands is a key component of the neuroendocrine stress response. The major stress hormones--glucocorticoids--have both central and peripheral effects. Among the factors regulating their availability to target tissues are levels of corticosteroid-binding globulin, as the major transport protein for glucocorticoids in systemic circulation. Our recent findings demonstrated expression of corticosteroid-binding globulin in various brain regions and in different cell populations (neurons and glial cells). We showed at the cellular level the presence of corticosteroid-binding globulin in the human hypothalamus, where it was co-localized with the classical neurohypophyseal neurohormones--vasopressin and oxytocin. For the first time we demonstrated in mouse that the same gene encodes brain and liver corticosteroid-binding globulin. The full-length sequencing of hypothalamic corticosteroid-binding globulin revealed a full homology with liver corticosteroid-binding globulin cDNA. Thus, we confirmed that corticosteroid-binding globulin mRNA is produced locally within various cerebral regions and thus not transported from blood. However, the amounts of mRNA encoding corticosteroid-binding globulin are in liver about 200 times higher than in brain. The wide distribution of corticosteroid-binding globulin, distinct from the localization of glucocorticoid receptors, observed in our comparative study in rodents, led us to propose two possibilities: (1) corticosteroid-binding globulin is made in certain neurons to deliver glucocorticoids into the cell and within the cell in the absence of cytoplasmic glucocorticoid receptors or (2) is internalized into neurons specifically to deliver glucocorticoids to classical glucocorticoid receptors. Brain corticosteroid-binding globulin may be involved in the response to changing systemic glucocorticoid levels either additionally to known nuclear and membrane corticosteroid receptors or in glucocorticoid responsive brain regions devoid of these receptors. Clearly the multiple locations of corticosteroid-binding globulin within the central nervous system of humans and rodents imply multiple functional properties in normal and/or pathological conditions, which are yet to be determined. Most likely, the importance of brain corticosteroid-binding globulin exceeds the function of a mere steroid transporter.
Transcortin, Hypothalamus, Brain, Mice, Receptors, Glucocorticoid, Liver, Organ Specificity, Stress, Physiological, Animals, Humans, RNA, Messenger
Transcortin, Hypothalamus, Brain, Mice, Receptors, Glucocorticoid, Liver, Organ Specificity, Stress, Physiological, Animals, Humans, RNA, Messenger
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%