Powered by OpenAIRE graph

Electrophysiological Analysis of Synaptic Transmission in Central Neurons ofDrosophilaLarvae

Authors: Jeffrey, Rohrbough; Kendal, Broadie;

Electrophysiological Analysis of Synaptic Transmission in Central Neurons ofDrosophilaLarvae

Abstract

We report functional neuronal and synaptic transmission properties in DrosophilaCNS neurons. Whole cell current- and voltage-clamp recordings were made from dorsally positioned neurons in the larval ventral nerve cord. Comparison of neuronal Green Fluorescent Protein markers and intracellular dye labeling revealed that recorded cells consisted primarily of identified motor neurons. Neurons had resting potentials of −50 to −60 mV and fired repetitive action potentials (APs) in response to depolarizing current injection. Acetylcholine application elicited large excitatory responses and AP bursts that were reversibly blocked by the nicotinic receptor antagonist d-tubocurarine (dtC). GABA and glutamate application elicited similar inhibitory responses that reversed near normal resting potential and were reversibly blocked by the chloride channel blocker picrotoxin. Multiple types of endogenous synaptically driven activity were present in most neurons, including fast spontaneous synaptic events resembling unitary excitatory postsynaptic currents (EPSCs) and sustained excitatory currents and potentials. Sustained forms of endogenous activity ranged in amplitude from smaller subthreshold “intermediate” sustained events to large “rhythmic” events that supported bursts of APs. Electrical stimulation of peripheral nerves or focal stimulation of the neuropil evoked sustained responses and fast EPSCs similar to endogenous events. Endogenous activity and evoked responses required external Ca2+and were reversibly blocked by dtC application, indicating that cholinergic synaptic transmission directly underlies observed activity. Synaptic current amplitude and frequency were reduced in shibire conditional dynamin mutants and increased in dunce cAMP phosphodiesterase mutants. These results complement and advance those of recent functional studies in Drosophila embryonic neurons and demonstrate the feasibility of in-depth synaptic transmission and plasticity studies in the Drosophila CNS.

Related Organizations
Keywords

Central Nervous System, Dynamins, Neurons, Patch-Clamp Techniques, Action Potentials, Glutamic Acid, Nicotinic Antagonists, Receptors, Nicotinic, Acetylcholine, Electric Stimulation, GTP Phosphohydrolases, Electrophysiology, GABA Antagonists, 3',5'-Cyclic-AMP Phosphodiesterases, Mutation, Animals, Drosophila Proteins, Picrotoxin, Calcium, Drosophila

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 10%