A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic
pmid: 20643123
A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic
The mammalian class III phosphatidylinositol 3-kinase (PI3K-III) complex regulates fundamental cellular functions, including growth factor receptor degradation, cytokinesis and autophagy. Recent studies suggest the existence of distinct PI3K-III sub-complexes that can potentially confer functional specificity. While a substantial body of work has focused on the roles of individual PI3K-III subunits in autophagy, functional studies on their contribution to endocytic receptor downregulation and cytokinesis are limited. We therefore sought to elucidate the specific nature of the PI3K-III complexes involved in these two processes. High-content microscopy-based assays combined with siRNA-mediated depletion of individual subunits indicated that a specific sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates both receptor degradation and cytokinesis, whereas ATG14L, a PI3K-III subunit involved in autophagy, is not required. The unanticipated role of UVRAG and BIF-1 in cytokinesis was supported by a strong localisation of these proteins to the midbody. Importantly, while the tumour suppressive functions of Beclin 1, UVRAG and BIF-1 have previously been ascribed to their roles in autophagy, these results open the possibility that they may also contribute to tumour suppression via downregulation of mitogenic signalling by growth factor receptors or preclusion of aneuploidy by ensuring faithful completion of cell division.
- University of Oslo Norway
Epidermal Growth Factor, Autophagy-Related Proteins, Down-Regulation, Membrane Proteins, Protein Serine-Threonine Kinases, Class III Phosphatidylinositol 3-Kinases, Models, Biological, Endocytosis, ErbB Receptors, Adaptor Proteins, Vesicular Transport, Aurora Kinases, Multiprotein Complexes, Cytoplasmic Structures, Humans, Beclin-1, RNA, Small Interfering, Apoptosis Regulatory Proteins, Adaptor Proteins, Signal Transducing, Cytokinesis, HeLa Cells
Epidermal Growth Factor, Autophagy-Related Proteins, Down-Regulation, Membrane Proteins, Protein Serine-Threonine Kinases, Class III Phosphatidylinositol 3-Kinases, Models, Biological, Endocytosis, ErbB Receptors, Adaptor Proteins, Vesicular Transport, Aurora Kinases, Multiprotein Complexes, Cytoplasmic Structures, Humans, Beclin-1, RNA, Small Interfering, Apoptosis Regulatory Proteins, Adaptor Proteins, Signal Transducing, Cytokinesis, HeLa Cells
21 Research products, page 1 of 3
- 2010IsPartOf
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).170 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
