Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance

Authors: David, Meiri; Keren, Tazat; Reut, Cohen-Peer; Odelia, Farchi-Pisanty; Keren, Aviezer-Hagai; Adi, Avni; Adina, Breiman;

Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance

Abstract

The ROF2 (FKBP65) is a heat stress protein which belongs to the FK506 Binding Protein (FKBP) family. It is homologous to ROF1 (FKBP62) which was recently shown to be involved in long term acquired thermotolerance by its interaction with HSP90.1 and modulation of the heat shock transcription factor HsfA2. In this study, we have demonstrated that ROF2 participates in long term acquired thermolerance, its mode of action being different from ROF1. In the absence of ROF2, the small heat shock proteins were highly expressed and the plants were resistant to heat stress, opposite to the effect observed in the absence of ROF1. It was further demonstrated that ROF2 transcription is modulated by HsfA2 which is also essential for keeping high levels of ROF2 during recovery from heat stress. ROF2 localization to the nucleus was observed several hours after heat stress exposure and its translocation to the nucleus was independent from the presence of HSP90.1 or HsfA2. ROF2 has been shown to interact with ROF1, to form heterodimers and it is suggested that via this interaction it can join the complex ROF1-HSP90.1- HsfA2. Transient expression of ROF2 together with ROF1 repressed transcription of small HSPs. A model describing the mode of action of ROF2 as a heat stress modulator which functions in negative feedback regulation of HsfA2 is proposed.

Related Organizations
Keywords

Hot Temperature, Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Arabidopsis, DNA-Binding Proteins, Tacrolimus Binding Proteins, Heat Shock Transcription Factors, Gene Expression Regulation, Plant, Two-Hybrid System Techniques, Electrophoresis, Polyacrylamide Gel, Fluorometry, Heat-Shock Proteins, Plant Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 10%