Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Light‐dependent gene expression for proteins in the respiratory chain of potato leaves

Authors: A S, Svensson; A G, Rasmusson;

Light‐dependent gene expression for proteins in the respiratory chain of potato leaves

Abstract

SummaryExpression of genes for respiratory chain dehydrogenases was investigated in potato (Solanum tuberosum L. cv. Desiree) leaves. The recently characterized nda1 and ndb1 genes, homologues to genes encoding the non‐proton pumping respiratory chain NADH‐dehydrogenases of Escherichia coli and yeast, were compared to genes encoding catalytic subunits of the proton‐pumping NADH dehydrogenase (complex I). As leaves develop from young to mature, the nda1 transcript level increases, accompanied by an elevation in immunodetected NDA protein and internal rotenone‐insensitive NADH oxidation. The other investigated transcripts, proteins and NAD(P)H oxidation activities were essentially unchanged. A variation in transcript level, specific for nda1, is seen at different times of the day with highest expression in the morning. This variation also influences the apparent developmental induction. Further, the nda1 mRNA in leaves specifically and completely disappears during dark treatment, with a rapid re‐induction when plants are returned to light. Corresponding immunodetected NDA protein is specifically decreased in mitochondria isolated from dark‐treated plants, accompanied by a lower capacity for internal rotenone‐insensitive NADH oxidation. Complete light dependence and diurnal changes in expression have previously not been reported for genes encoding respiratory chain proteins. Qualitatively similar to NDA, the alternative oxidase showed developmental induction and light dependence. In addition to the specific change in nda1, a general, slower down‐regulation in darkness was seen for the other NAD(P)H dehydrogenase genes. The nda1 expression during development, and in response to light, indicates a specific role of the encoded enzyme in the photosynthetically associated mitochondrial metabolism.

Related Organizations
Keywords

Aging, Light, Blotting, Western, Genes, Plant, Electron Transport, Gene Expression Regulation, Plant, Rotenone, RNA, Messenger, Solanum tuberosum, Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Regulation, Developmental, NADH Dehydrogenase, Darkness, NAD, Circadian Rhythm, Mitochondria, Plant Leaves, RNA, Plant, Oxidation-Reduction, NADP

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    118
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
118
Top 10%
Top 10%
Top 10%
bronze