Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimiearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimie
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Structure and function of Plasmodium falciparum malate dehydrogenase: Role of critical amino acids in co-substrate binding pocket

Authors: Anupam, Pradhan; Abhai K, Tripathi; Prashant V, Desai; Prasenjit K, Mukherjee; Mitchell A, Avery; Larry A, Walker; Babu L, Tekwani;

Structure and function of Plasmodium falciparum malate dehydrogenase: Role of critical amino acids in co-substrate binding pocket

Abstract

The malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our laboratory have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal glycine motif, which forms a characteristic Rossman dinucleotide-binding fold in the co-substrate binding pocket, differentiates PfMDH (GlyXGlyXXGly) from other eukaryotic and prokaryotic malate dehydrogenases (GlyXXGlyXXGly). The amino acids lining the co-substrate binding pocket are completely conserved in MDHs from different species of human, primate and rodent malaria parasites. Based on this knowledge and conserved domains among prokaryotic and eukaryotic MDH, the role of critical amino acids lining the co-substrate binding pocket was analyzed in catalytic functions of PfMDH using site-directed mutagenesis. Insertion of Ala at the 9th or 10th position, which converts the N-terminal GlyXGlyXXGly motif (characteristic of malarial MDH and LDH) to GlyXXGlyXXGly (as in bacterial and eukaryotic MDH), uncoupled regulation of the enzyme through substrate inhibition. The dinucleotide fold GlyXGlyXXGly motif seems not to be responsible for the distinct affinity of PfMDH to 3-acetylpyridine-adenine dinucleotide (APAD, a synthetic analog of NAD), since Ala9 and Ala10 insertion mutants still utilized APADH. The Gln11Met mutation, which converts the signature glycine motif in PfMDH to that of PfLDH, did not change the enzyme function. However, the Gln11Gly mutant showed approximately a 5-fold increase in catalytic activity, and higher susceptibility to inhibition with gossypol. Asn119 and His174 participate in binding of both co-substrate and substrate. The Asn119Gly mutant exhibited approximately a 3-fold decrease in catalytic efficiency, while mutation of His174 to Asn or Ala resulted in an inactive enzyme. These studies provide critical insights into the co-substrate binding pocket of PfMDH, which may be important in design of selective PfMDH/PfLDH inhibitors as potential antimalarials.

Related Organizations
Keywords

Binding Sites, L-Lactate Dehydrogenase, Protein Conformation, Plasmodium falciparum, NAD, Substrate Specificity, Antimalarials, Malate Dehydrogenase, Humans, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Average