Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2007 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
UNC Dataverse
Article . 2007
Data sources: Datacite
Genetics
Article . 2007
versions View all 3 versions

Reducing DNA Polymerase α in the Absence of Drosophila ATR Leads to P53-Dependent Apoptosis and Developmental Defects

Authors: Jeannine R, LaRocque; Diana L, Dougherty; Sumreen K, Hussain; Jeff, Sekelsky;

Reducing DNA Polymerase α in the Absence of Drosophila ATR Leads to P53-Dependent Apoptosis and Developmental Defects

Abstract

Abstract The ability to respond to DNA damage and incomplete replication ensures proper duplication and stability of the genome. Two checkpoint kinases, ATM and ATR, are required for DNA damage and replication checkpoint responses. In Drosophila, the ATR ortholog (MEI-41) is essential for preventing entry into mitosis in the presence of DNA damage. In the absence of MEI-41, heterozygosity for the E(mus304) mutation causes rough eyes. We found that E(mus304) is a mutation in DNApol-α180, which encodes the catalytic subunit of DNA polymerase α. We did not find any defects resulting from reducing Polα by itself. However, reducing Polα in the absence of MEI-41 resulted in elevated P53-dependent apoptosis, rough eyes, and increased genomic instability. Reducing Polα in mutants that lack downstream components of the DNA damage checkpoint (DmChk1 and DmChk2) results in the same defects. Furthermore, reducing levels of mitotic cyclins rescues both phenotypes. We suggest that reducing Polα slows replication, imposing an essential requirement for the MEI-41-dependent checkpoint for maintenance of genome stability, cell survival, and proper development. This work demonstrates a critical contribution of the checkpoint function of MEI-41 in responding to endogenous damage.

Related Organizations
Keywords

Male, Eye Diseases, Tumor Suppressor Proteins, Apoptosis, Cell Cycle Proteins, Ataxia Telangiectasia Mutated Proteins, Protein Serine-Threonine Kinases, DNA Polymerase I, Genomic Instability, DNA-Binding Proteins, Animals, Drosophila Proteins, Drosophila, Tumor Suppressor Protein p53, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
hybrid