Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
Data sources: PubMed Central
Molecular Biology of the Cell
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Cdo Interacts with APPL1 and Activates AKT in Myoblast Differentiation

Authors: Bae, Gyu-Un; Lee, Jae-Rin; Kim, Bok-Geon; Han, Ji-Won; Leem, Young-Eun; Lee, Hey-Jin; Ho, Seok-Man; +2 Authors

Cdo Interacts with APPL1 and Activates AKT in Myoblast Differentiation

Abstract

Cell–cell interactions between muscle precursors are required for myogenic differentiation; however, underlying mechanisms are largely unknown. Promyogenic cell surface protein Cdo functions as a component of multiprotein complexes containing other cell adhesion molecules, Boc, Neogenin and N-cadherin, and mediates some of signals triggered by cell–cell interactions between muscle precursors. Cdo activates p38MAPK via interaction with two scaffold proteins JLP and Bnip-2 to promote myogenesis. p38MAPK and Akt signaling are required for myogenic differentiation and activation of both signaling pathways is crucial for efficient myogenic differentiation. We report here that APPL1, an interacting partner of Akt, forms complexes with Cdo and Boc in differentiating myoblasts. Both Cdo and APPL1 are required for efficient Akt activation during myoblast differentiation. The defective differentiation of Cdo-depleted cells is fully rescued by overexpression of a constitutively active form of Akt, whereas overexpression of APPL1 fails to do so. Taken together, Cdo activates Akt through association with APPL1 during myoblast differentiation, and this complex likely mediates some of the promyogenic effect of cell–cell interaction. The promyogenic function of Cdo involves a coordinated activation of p38MAPK and Akt via association with scaffold proteins, JLP and Bnip-2 for p38MAPK and APPL1 for Akt.

Related Organizations
Keywords

Membrane Proteins, Cell Differentiation, Articles, Cadherins, Muscle Development, Cell Line, Enzyme Activation, Myoblasts, Mice, Animals, Humans, Amino Acids, Cell Adhesion Molecules, Proto-Oncogene Proteins c-akt, Adaptor Proteins, Signal Transducing, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Green
hybrid