Powered by OpenAIRE graph

Neuronal accumulation of α- and β-synucleins in the brain of a GM2 gangliosidosis mouse model

Authors: Shoji Yamanaka; Ichiro Aoki; Kenji Kosaka; Eizo Iseki; Kyoko Suzuki; Akira Yamaguchi; Omi Katsuse; +1 Authors

Neuronal accumulation of α- and β-synucleins in the brain of a GM2 gangliosidosis mouse model

Abstract

Sandhoff disease (SD) is a heritable lysosomal storage disease resulting from impaired degradation of GM2 ganglioside. The hallmark pathology of the SD model mouse brain is GM2 ganglioside accumulation in neurons. In the present study, we immunohistochemically investigated the neuronal pathology in SD mouse brains, and demonstrated neuronal accumulation of alpha- and beta-synucleins in addition to GM2 ganglioside. Synuclein-positive neurons were extensively observed throughout SD mouse brains, although the distribution of beta-synuclein was less extensive than that of alpha-synuclein. Synuclein-positive neurons were negative to ubiquitin and PHF-tau. These findings suggest that neuronal synucleins may accumulate secondarily to GM2 ganglioside in SD mouse brains, and that neuronal accumulation of synucleins may be more critical than that of GM2 ganglioside for SD mice.

Related Organizations
Keywords

Mice, Knockout, Neurons, Synucleins, Brain, Mice, Inbred Strains, Nerve Tissue Proteins, Sandhoff Disease, Immunohistochemistry, Disease Models, Animal, Mice, beta-Synuclein, Gangliosidoses, GM2, alpha-Synuclein, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%