Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Human Endothelial Pyk2 Is Expressed in Two Isoforms and Associates with Paxillin and p130Cas

Authors: Rosemary J, Keogh; Rebecca A, Houliston; Caroline P D, Wheeler-Jones;

Human Endothelial Pyk2 Is Expressed in Two Isoforms and Associates with Paxillin and p130Cas

Abstract

Proline-rich kinase 2 (Pyk2) is a non-receptor tyrosine kinase belonging to the focal adhesion kinase family. Many stimuli can initiate phosphorylation and activation of Pyk2 but its specific activators and downstream targets are still largely unidentified and little is known of the mechanisms or role of Pyk2 activation in endothelial cells. In human umbilical vein endothelial cells (HUVEC), we show that (1) Pyk2 is phosphorylated on tyrosine residues 402, 580, and 881 in response to stimulation with G-protein-coupled receptor agonists (GPCAs), vascular endothelial growth factor, and the cytokine interleukin-1alpha; (2) HUVEC express mRNA for two isoforms of Pyk2 which do not appear to be regulated transcriptionally by GPCAs, growth factors, or cytokines; and (3) Pyk2 is localised to the cytosol and associates through its C-terminus with the cytoskeletal protein paxillin and the adapter molecule p130Cas in phosphorylation-independent interactions. These results demonstrate that Pyk2 is rapidly activated and associates with structural and adapter proteins suggesting that it is an important kinase involved in mediating acute responses in endothelium.

Related Organizations
Keywords

ADP-Ribosylation Factors, GTPase-Activating Proteins, Protein-Tyrosine Kinases, Ligands, Phosphoproteins, Peptide Fragments, Cell Line, Cytoskeletal Proteins, Crk-Associated Substrate Protein, Focal Adhesion Kinase 2, Humans, Protein Isoforms, Endothelium, Endothelium, Vascular, Paxillin, Phosphorylation, Phosphotyrosine, Cells, Cultured, Histamine, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%