Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Subcellular Localization of Human Voltage-dependent Anion Channel Isoforms

Authors: Michael Forte; William J. Wolfgang; Wei Hong Yu;

Subcellular Localization of Human Voltage-dependent Anion Channel Isoforms

Abstract

The voltage-dependent anion channel of the outer mitochondrial membrane, VDAC (also known as mitochondrial porin), is a small abundant protein which forms a voltage-gated pore when incorporated into planar lipid bilayers. This protein forms the primary pathway for movement of major metabolites through the outer membrane. Recently, it has been demonstrated that two human VDAC genes, HVDAC1 and HVDAC2, produce three proteins that differ most significantly at their amino termini. These results suggest that the distinct amino termini lead to the targeting of individual VDAC isoforms to different cellular compartments. Consistent with this hypothesis, recent reports suggest that HIV-DAC1 is found in the plasma membrane of mammalian cells. To define the subcellular location of HVDAC isoforms, HVDAC genes were modified so that the encoded proteins contain COOH-terminal epitopes recognized by either of two monoclonal antibodies. Introduction of these epitope tags had no effect on the function of modified VDAC proteins. Epitope-tagged proteins were then individually expressed in COS7 cells or rat astrocytes and the intracellular location of each isoform subsequently identified by subcellular fractionation, light level immunofluorescence, and immunoelectron microscopy. Our results demonstrate that each HVDAC protein is exclusively located in fractions or subcellular regions containing mitochondrial marker proteins. In addition, immunofluorescence and immunoelectron microscopy show that an individual mitochondrion can contain both HVDAC1 and HVDAC2. Our results call into question previous reports demonstrating VDAC molecules in the plasma membrane and suggest that functional differences between individual VDAC isoforms may result in distinct regulatory processes within a single mitochondrion.

Related Organizations
Keywords

Voltage-Dependent Anion Channel 1, Molecular Sequence Data, Membrane Proteins, Porins, Ion Channels, Rats, Mice, Animals, Humans, Voltage-Dependent Anion Channels, Amino Acid Sequence, Microscopy, Immunoelectron

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%
gold