Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Differential Effects of Neurofibromin Gene Dosage on Melanocyte Development

Authors: Deo, M.; Huang, J. L.-Y.; Fuchs, H.; Hrabě de Angelis, M.; van Raamsdonk, C. D.;

Differential Effects of Neurofibromin Gene Dosage on Melanocyte Development

Abstract

Mutations in neurofibromin (NF1) cause the dominant genetic disorder neurofibromatosis type 1. Neurofibromatosis is characterized by Schwann cell-based tumors and skin hyperpigmentation, resulting from both haploinsufficiency and loss of heterozygosity. The fact that some pigment cells (melanocytes) arise from Schwann cell precursors suggests that neurofibromin could be required during the common precursor stage. In this study, we found a missense mutation in neurofibromin in Dark skin 9 (Dsk9) mutant mice, revealing that Nf1 mutations cause skin hyperpigmentation in mice, as they do in humans. Using tissue-specific knockouts, we found that haploinsufficiency of neurofibromin in melanocytes via Mitf-cre is insufficient to cause darker skin, whereas haploinsufficiency in bipotential Schwann cell-melanoblast precursors via Plp1-creER is sufficient. These findings suggest that there is a narrow developmental window during which Nf1 haploinsufficiency acts on pigment cells. Using fate mapping, we discovered differences in the colonization of the dermis and epidermis by melanocytes that arise from Schwann cell precursors, an unexpected complexity of melanocyte development. As homozygous knockout of Nf1 via Mitf-cre is sufficient to cause darker skin, we conclude that reduced gene dosage can act by a mechanism different from complete gene loss, even when the end result of both is very similar.

Keywords

Male, Mice, Knockout, Mice, Inbred C3H, Neurofibromin 1, Stem Cells, Gene Dosage, Mutation, Missense, Cell Biology, Dermatology, Dermis, Haploinsufficiency, Biochemistry, Mice, Inbred C57BL, Mice, Hyperpigmentation, Animals, Melanocytes, Female, Schwann Cells, Epidermis, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
hybrid