Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetes Carearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes Care
Article . 2009 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes Care
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Use of Multiple Metabolic and Genetic Markers to Improve the Prediction of Type 2 Diabetes: the EPIC-Potsdam Study

Authors: Schulze, Matthias B.; Weikert, Cornelia; Pischon, Tobias; Bergmann, Manuela M.; Al-Hasani, Hadi; Schleicher, Erwin; Fritsche, Andreas; +3 Authors

Use of Multiple Metabolic and Genetic Markers to Improve the Prediction of Type 2 Diabetes: the EPIC-Potsdam Study

Abstract

OBJECTIVE We investigated whether metabolic biomarkers and single nucleotide polymorphisms (SNPs) improve diabetes prediction beyond age, anthropometry, and lifestyle risk factors. RESEARCH DESIGN AND METHODS A case-cohort study within a prospective study was designed. We randomly selected a subcohort (n = 2,500) from 26,444 participants, of whom 1,962 were diabetes free at baseline. Of the 801 incident type 2 diabetes cases identified in the cohort during 7 years of follow-up, 579 remained for analyses after exclusions. Prediction models were compared by receiver operatoring characteristic (ROC) curve and integrated discrimination improvement. RESULTS Case-control discrimination by the lifestyle characteristics (ROC-AUC: 0.8465) improved with plasma glucose (ROC-AUC: 0.8672, P < 0.001) and A1C (ROC-AUC: 0.8859, P < 0.001). ROC-AUC further improved with HDL cholesterol, triglycerides, γ-glutamyltransferase, and alanine aminotransferase (0.9000, P = 0.002). Twenty SNPs did not improve discrimination beyond these characteristics (P = 0.69). CONCLUSIONS Metabolic markers, but not genotyping for 20 diabetogenic SNPs, improve discrimination of incident type 2 diabetes beyond lifestyle risk factors.

Keywords

Blood Glucose, Genetic Markers, Glycated Hemoglobin, Genotype, Cholesterol, HDL, Alanine Transaminase, gamma-Glutamyltransferase, Polymorphism, Single Nucleotide, Risk Assessment, Cohort Studies, Diabetes Mellitus, Type 2, ROC Curve, Predictive Value of Tests, Area Under Curve, Case-Control Studies, Germany, Humans, Prospective Studies, Biomarkers, Original Research

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 10%
Top 10%
Top 1%
Green
hybrid