Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease

Authors: Joshua J. Breunig; Caroline Rouaux; Pasko Rakic; Günter U. Höglinger; Patrick P. Michel; Candan Depboylu; Wolfgang H. Oertel; +5 Authors

The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease

Abstract

The mechanisms leading to degeneration of dopaminergic neurons (DNs) in the substantia nigra of patients with Parkinson's disease (PD) are not completely understood. Here, we show, in the postmortem human tissue, that these neurons aberrantly express mitosis-associated proteins, including the E2F-1 transcription factor, and appear to duplicate their nuclear DNA. We further demonstrate that the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injected into mice and application of its active metabolite 1-methyl-4-phenylpyridinium to mesencephalic cultures activate the retinoblastoma–E2F pathway in postmitotic DNs. We also find that cell death rather than mitotic division followed the toxin-induced replication of DNA, as determined by BrdU incorporation in DNs. In addition, blocking E2F-1 transcription protected cultured DNs against 1-methyl-4-phenylpyridinium toxicity. Finally, E2F-1-deficient mice were significantly more resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic cell death than their wild-type littermates. Altogether, BrdU incorporation in mature neurons and lack of evidence for newborn neurons argue against neuronal turnover in normal conditions or during pathological states in the substantia nigra. Instead, our results demonstrate that mitosis-like signals are activated in mature DNs in patients with PD and mediate neuronal death in experimental models of the disease. Inhibition of mitosis-like signals may therefore provide strategies for neuroprotection in PD.

Keywords

Male, Mice, Knockout, 1-Methyl-4-phenylpyridinium, Analysis of Variance, Apoptosis, Parkinson Disease, Oligonucleotides, Antisense, Immunohistochemistry, Mice, Inbred C57BL, Substantia Nigra, Mice, Gene Expression Regulation, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Interneurons, Animals, Humans, Chromatography, High Pressure Liquid, E2F1 Transcription Factor, In Situ Hybridization, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    248
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
248
Top 1%
Top 10%
Top 1%
bronze