Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes
Article
Data sources: UnpayWall
Diabetes
Article . 2001 . Peer-reviewed
Data sources: Crossref
Diabetes
Article . 2001
versions View all 2 versions

A Role for Protein Phosphatase 2A–Like Activity, but Not Atypical Protein Kinase Cζ, in the Inhibition of Protein Kinase B/Akt and Glycogen Synthesis by Palmitate

Authors: R, Cazzolli; L, Carpenter; T J, Biden; C, Schmitz-Peiffer;

A Role for Protein Phosphatase 2A–Like Activity, but Not Atypical Protein Kinase Cζ, in the Inhibition of Protein Kinase B/Akt and Glycogen Synthesis by Palmitate

Abstract

We have shown previously that palmitate treatment of C2C12 skeletal muscle myotubes causes inhibition of the protein kinase B (PKB) pathway and hence reduces insulin-stimulated glycogen synthesis through the elevation of intracellular ceramide levels. Ceramide is known to activate both atypical protein kinase C (aPKC) ζ and protein phosphatase (PP) 2A, and each of these effectors has been reported to inhibit PKB. In the present study, palmitate pretreatment was found to elevate PP2A-like activity in myotubes and to prevent its inhibition by insulin. Incubation with the phosphatase inhibitor okadaic acid before insulin stimulation protected against the effect of the fatty acid on PKB phosphorylation. Palmitate was unable to inhibit PKB activity and glycogen synthesis in cells overexpressing the activated PKB mutant (T308D,S473D)-PKBα, which is unaffected by phosphatase. In contrast, PKB activity and glycogen synthesis were still inhibited by palmitate in cells overexpressing a membrane-targeted and, hence, activated PKB mutant that retains sensitivity to phosphatase. Although aPKC activity was also increased in palmitate-treated cells, overexpression of wild-type or kinase-dead aPKCζ did not alter the inhibitory effects of the lipid on either stimulation of PKB or glycogen synthesis by insulin. We conclude that palmitate disrupts insulin signaling in C2C12 myotubes by promoting PP2A-like activity and, therefore, the dephosphorylation of PKB, which in turn reduces the stimulation of glycogen synthesis.

Related Organizations
Keywords

Palmitic Acid, Protein Serine-Threonine Kinases, Cell Line, Isoenzymes, Mice, Proto-Oncogene Proteins, Phosphoprotein Phosphatases, Animals, Protein Phosphatase 2, Phosphorylation, Muscle, Skeletal, Proto-Oncogene Proteins c-akt, Glycogen, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 10%
Top 10%
Top 1%
bronze