Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Immunityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Immunity
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Immunity
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Immunity
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Immunity
Article . 2007
versions View all 4 versions

Ndfip1 Protein Promotes the Function of Itch Ubiquitin Ligase to Prevent T Cell Activation and T Helper 2 Cell-Mediated Inflammation

Authors: Oliver, Paula M.; Cao, Xiao; Worthen, George Scott; Shi, Peijun; Briones, Natalie; MacLeod, Megan; White, Janice; +4 Authors

Ndfip1 Protein Promotes the Function of Itch Ubiquitin Ligase to Prevent T Cell Activation and T Helper 2 Cell-Mediated Inflammation

Abstract

Nedd4 family interacting protein-1 (Ndfip1) is a protein whose only known function is that it binds Nedd4, a HECT-type E3 ubiquitin ligase. Here we show that mice lacking Ndfip1 developed severe inflammation of the skin and lung and died prematurely. This condition was due to a defect in Ndfip1(-/-) T cells. Ndfip1(-/-) T cells were activated, and they proliferated and adopted a T helper 2 (Th2) phenotype more readily than did their Ndfip1(+/+) counterparts. This phenotype resembled that of Itchy mutant mice, suggesting that Ndfip1 might affect the function of Itch, an E3 ubiquitin ligase. We show that T cell activation promoted both Ndfip1 expression and its association with Itch. In the absence of Ndfip1, JunB half-life was prolonged after T cell activation. Thus, in the absence of Ndfip1, Itch is inactive and JunB accumulates. As a result, T cells produce Th2 cytokines and promote Th2-mediated inflammatory disease.

Keywords

Inflammation, Proto-Oncogene Proteins c-jun, Reverse Transcriptase Polymerase Chain Reaction, T-Lymphocytes, Ubiquitin-Protein Ligases, Immunology, Blotting, Western, Membrane Proteins, Flow Cytometry, Lymphocyte Activation, Mice, Infectious Diseases, Th2 Cells, CELLIMMUNO, Immunology and Allergy, Animals, Cytokines, Intercellular Signaling Peptides and Proteins, MOLIMMUNO, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 10%
Top 10%
Top 10%
hybrid