Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Evidence-Based Compl...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Evidence-Based Complementary and Alternative Medicine
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

The Mechanism and Experimental Validation of Forsythoside A in the Treatment of Male Infertility Were Analyzed Based on Network Pharmacology and Molecular Docking

Authors: Zhen Ma; Xueling Liu; Haiwang Lu; Haoming Li; Ruizhi Gao; Rong Wen; Zhiping Tang; +3 Authors

The Mechanism and Experimental Validation of Forsythoside A in the Treatment of Male Infertility Were Analyzed Based on Network Pharmacology and Molecular Docking

Abstract

Chinese medicine extracts are currently the hotspot of new drug research and development. Herein, we report the mechanism of action of the traditional Chinese medicine extract Forsythiaside A in the treatment of male infertility and experimental verification. We first obtained 95 intersection genes between the target protein of Forsythiaside A and the target genes of male infertility and screened 13 key genes. In molecular docking, Forsythiaside A can each have a higher total docking score with 12 key genes and have a better combination. These 95 intersection genes are mainly related to biological processes such as response to peptide hormone, response to oxidative stress, and participation in the oxidative stress of the forkhead box O (FoxO) signaling pathway. Therefore, we use ornidazole to induce an experimental model of oligoasthenospermia in rats and use different concentrations of Forsythiaside A to intervene. We proved that the semen quality and superoxide dismutase (SOD) activities of model group rats were significantly lower than those of the blank group, and semen quality and SOD activities of the low-dose group and high-dose group were significantly higher than those of the model group. The malondialdehyde (MDA) level of model group rats was significantly higher than that of blank group, while the MDA levels of the low-dose group and high-dose group were significantly lower than that of the model group. Forsythoside A is a potential drug substance for male infertility and improves the semen quality, MDA levels, and SOD activities of rats with oligoasthenospermia.

Keywords

Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold